[1]吕绍伦,赵阳,陈万基,等. 基于遥感云计算的阿拉尔市棉花种植面积提取[J]. 棉花科学,2022,44(4):19-25.
[2]魏瑞琪,李林峰,仙巍,等. 利用TIMESAT软件和时间序列卫星影像提取新疆石河子棉花种植区域[J]. 湖北农业科学,2018,57(4):105-112.
[3]王文静,张霞,赵银娣,等. 综合多特征的Landsat 8时序遥感图像棉花分类方法[J]. 遥感学报,2017,21(1):115-124.
[4]刘传迹,金晓斌,徐伟义,等. 2000—2020年南疆地区棉花种植空间格局及其变化特征分析[J]. 农业工程学报,2021,37(16):223-232.
[5]Ren B Y,Zhou H Z,Shen H,et al. Research on cotton information extraction based on Sentinel-2 time series analysis[C]//2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics).Turkey:IEEE,2019:1-6.
[6]Wang N,Zhai Y G,Zhang L F.Automatic cotton mapping using time series of Sentinel-2 images[J]. Remote Sensing,2021,13(7):1355.
[7]He L M,Mostovoy G. Cotton yield estimate using Sentinel-2 data and an ecosystem model over the southern US[J]. Remote Sensing,2019,11(17):2000.
[8]Li M,Zhao G X,Qin Y W. Extraction and monitoring of cotton area and growth information using remote sensing at small scale:a case study in dingzhuang town of Guangrao County,China[C]//2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring.Changsha:IEEE,2011:816-823.
[9]田野,张清,李希灿,等. 基于多时相影像的棉花种植信息提取方法研究[J]. 干旱区研究,2017,34(2):423-430.
[10]荀兰. 基于Sentinel-1/2卫星影像的棉花种植区识别方法研究[D]. 北京:中国科学院大学(中国科学院空天信息创新研究院),2022.
[11]Fei H,Fan Z H,Wang C K,et al. Cotton classification method at the county scale based on multi-features and random forest feature selection algorithm and classifier[J]. Remote Sensing,2022,14(4):829.
[12]王汇涵,张泽,康孝岩,等. 基于Sentinel-2A的棉花种植面积提取及产量预测[J]. 农业工程学报,2022,38(9):205-214.
[13]美合日阿依·莫一丁,买买提·沙吾提,李金朝. 基于Sentinel-2时间序列数据及物候特征的棉花种植区提取[J]. 干旱区地理,2022,45(6):1847-1859.
[14]Rodriguez-Sanchez J,Li C Y,Paterson A H. Cotton yield estimation from aerial imagery using machine learning approaches[J]. Frontiers in Plant Science,2022,13:870181.
[15]Hong Y,Li D R,Wang M,et al. Cotton cultivated area extraction based on multi-feature combination and CSSDI under spatial constraint[J]. Remote Sensing,2022,14(6):1392.
[16]王利民,刘佳,姚保民,等. 基于Rapideye数据的棉花特征光谱指数构建及类型识别[J]. 中国农业信息,2019,31(5):25-37.
[17]Gorelick N,Hancher M,Dixon M,et al. Google Earth Engine:Planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment,2017,202:18-27.
[18]郝斌飞,韩旭军,马明国,等. Google Earth Engine在地球科学与环境科学中的应用研究进展[J]. 遥感技术与应用,2018,33(4):600-611.
[19]Bruzzone L,Roli F,Serpico S B. An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection[J]. IEEE Transactions on Geoscience and Remote Sensing,1995,33(6):1318-1321.
[20]Iqbal N,Mumtaz R,Shafi U,et al. Gray level co-occurrence matrix (GLCM) texture based crop classification using low altitude remote sensing platforms[J]. PeerJ Computer Science,2021,7:e536.
[21]Friedman J H.Stochastic gradient boosting[J]. Computational Statistics & Data Analysis,2002,38(4):367-378.
[22]张海洋,张瑶,田泽众,等. 基于GBDT和Google Earth Engine的冬小麦种植结构提取[J]. 光谱学与光谱分析,2023,43(2):597-607.
[23]卓越,严海军. 基于梯度提升树算法的玉米施肥模型构建[J]. 水资源与水工程学报,2020,31(4):223-228,237.
[24]林志坚,姚俊萌,苏校平,等. 基于MODIS指数和随机森林的江西省早稻种植信息提取[J]. 农业工程学报,2022,38(11):197-205.
[25]李旭青,刘世盟,李龙,等. 基于RF算法优选多时相特征的冬小麦空间分布自动解译[J]. 农业机械学报,2019,50(6):218-225.
[26]Belgiu M,Draˇgu L. Random forest in remote sensing:a review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2016,114:24-31.
[27]肖博林. 基于支持向量机的高光谱遥感影像分类[J]. 科技创新与应用,2020,10(4):22-24.
[28]费浩. 综合多特征的县域尺度棉花种植面积遥感提取方法[D]. 阿拉尔:塔里木大学,2021:29-30.
[29]刘浩然,刘秀清,王春乐. 基于随机森林和超像素的极化SAR图像分类[J]. 国外电子测量技术,2021,40(9):29-35.
[30]黄鹏程,张明明,王新宇,等. 基于Landsat-8 OLI的西安市土地利用类型遥感分类研究[J]. 测绘与空间地理信息,2020,43(1):85-88,92.
[31]张群. 基于高分遥感的黑方台滑坡识别[D]. 西安:长安大学,2017:28-30.