[1]陈聪,于啸,宫琪. 基于改进残差网络的苹果叶片病害识别研究[J]. 河南农业科学,2023,52(4):152-161.
[2]Chen J D,Wang W H,Zhang D F,et al. Attention embedded lightweight network for maize disease recognition[J]. Plant Pathology,2021,70(3):630-642.
[3]王焕鑫,沈志豪,刘泉,等. 基于改进MobileNet v2模型的农作物叶片病害识别研究[J]. 河南农业科学,2023,52(4):143-151.
[4]马丽,周巧黎,赵丽亚,等. 基于深度学习的番茄叶片病害分类识别研究[J]. 中国农机化学报,2023,44(7):187-193,206.
[5]罗东升,周子敬,王志伟,等. 改进ACGAN数据增强的番茄叶片病害识别[J]. 太原理工大学学报,2023,54(5):861-868.
[6]Ahila Priyadharshini R,Arivazhagan S,Arun M,et al. Maize leaf disease classification using deep convolutional neural networks[J]. Neural Computing and Applications,2019,31(12):8887-8895.
[7]左昊轩,黄祺成,杨佳昊,等. 基于改进YOLO v5s的作物黄化曲叶病检测方法[J]. 农业机械学报,2023,54(增刊1):230-238.
[8]陶兆胜,石鑫宇,王勇,等. 基于改进YOLO v5s的番茄叶片病害检测方法[J]. 沈阳农业大学学报,2023,54(6):712-721.
[9]惠巧娟,孙婕. 基于多尺度特征度量元学习的玉米叶片病害识别模型研究[J]. 江苏农业科学,2023,51(9):199-206.
[10]刘敏,周丽. 基于多尺度特征融合网络的苹果病害叶片检测[J]. 中国农机化学报,2023,44(8):184-190.
[11]邢鹏康,李久朋. 基于小样本学习的马铃薯叶片病害检测[J]. 江苏农业科学,2023,51(15):203-210.
[12]黄炜,王娟娟,殷学丽. 基于特征分离的小样本苹果病害叶片检测[J]. 江苏农业科学,2023,51(23):195-202.
[13]李军,李志伟,李艳红. 基于多原型指导的小样本水稻害虫识别与分类[J]. 江苏农业科学,2023,51(20):193-200.
[14]Jia J F,Feng X,Yu H Q. Few-shot classification via efficient meta-learning with hybrid optimization[J]. Engineering Applications of Artificial Intelligence,2024,127:107296.
[15]冯晓,李丹丹,王文君,等. 基于轻量级卷积神经网络和迁移学习的小麦叶部病害图像识别[J]. 河南农业科学,2021,50(4):174-180.
[16]Islam M M,Adil M A A,Talukder M A,et al. DeepCrop:deep learning-based crop disease prediction with web application[J]. Journal of Agriculture and Food Research,2023,14:100764.
[17]Yang L,Yu X Y,Zhang S P,et al. GoogLeNet based on residual network and attention mechanism identification of rice leaf diseases[J]. Computers and Electronics in Agriculture,2023,204:107543.
[18]孙开伟,刘虎,冉雪,等. 基于多尺度原型分层匹配的小样本分割方法[J]. 计算机科学,2023,50(增刊1):220300275.
[19]王林柏,张博,姚竞发,等. 基于卷积神经网络马铃薯叶片病害识别和病斑检测[J]. 中国农机化学报,2021,42(11):122-129.
[20]Uskaner Hepsagˇ P. Efficient plant disease identification using few-shot learning:a transfer learning approach[J]. Multimedia Tools and Applications,2024,83(20):58293-58308.