[1]Liu W,Wang B,Zhao Z,et al. Historical review and countermeasures of wheat stripe rust epidemics in China[J]. China Plant Prot,2022,42:21-7.
[2]Picon A,Seitz M,Alvarez-Gila A,et al. Crop conditional Convolutional Neural Networks for massive multi-crop plant disease classification over cell phone acquired images taken on real field conditions[J]. Computers and Electronics in Agriculture,2019,167:105093.
[3]焦悦,王思曼,赵喜兰,等. 50个国外小麦品种(系)抗叶锈性鉴定[J]. 河南农业科学,2019,48(12):79-88.
[4]刁智华,袁万宾,罗雅雯,等. 基于图像处理的小麦白粉病病斑生长模型构建[J]. 中国农机化学报,2019,40(6):158-161.
[5]Boulent J,Foucher S,Théau J,et al. Convolutional neural networks for the automatic identification of plant diseases[J]. Frontiers in Plant Science,2019,10:941.
[6]孙俊,谭文军,毛罕平,等. 基于改进卷积神经网络的多种植物叶片病害识别[J]. 农业工程学报,2017,33(19):209-215.
[7]Xiong Y H,Liang L F,Wang L,et al. Identification of cash crop diseases using automatic image segmentation algorithm and deep learning with expanded dataset[J]. Computers and Electronics in Agriculture,2020,177:105712.
[8]Singh P,Verma A,Alex J S R. Disease and pest infection detection in coconut tree through deep learning techniques[J]. Computers and Electronics in Agriculture,2021,182:105986.
[9]顾博,邓蕾蕾,李巍,等. 基于GrabCut算法的玉米病害图像识别方法研究[J]. 中国农机化学报,2019,40(11):143-149.
[10]陈燕,朱成宇,胡小春,等. 基于改进Unet的小麦茎秆截面参数检测[J]. 农业机械学报,2021,52(7):169-176.
[11]冯晓,李丹丹,王文君,等. 基于轻量级卷积神经网络和迁移学习的小麦叶部病害图像识别[J]. 河南农业科学,2021,50(4):174-80.
[12]Nanni L,Manfè A,Maguolo G,et al. High performing ensemble of convolutional neural networks for insect pest image detection[J]. Ecological Informatics,2022,67:101515.
[13]Khan M K,Ullah M O. Deep transfer learning inspired automatic insect pest recognition[C]//Proceedings of the 3rd international conference on computational sciences and technologies. Jamshoro,Pakistan:Mehran University of Engineering and Technology,2022.
[14]Li C,Zhen T,Li Z H. Image classification of pests with residual neural network based on transfer learning[J]. Applied Sciences,2022,12(9):4356.
[15]杨非凡,徐伟诚,陈盛德,等. 融合Focal Loss与典型卷积神经网络结构的水稻病害图像分类[J]. 江苏农业科学,2023,51(14):198-204.
[16]惠巧娟,孙婕. 基于多尺度特征度量元学习的玉米叶片病害识别模型研究[J]. 江苏农业科学,2023,51(9):199-206.
[17]Khalifa N E M,Loey M,Taha M H N. Insect pests recognition based on deep transfer learning models[J]. J Theor Appl Inf Technol,2020,98(1):60-68.
[18]Pattnaik G,Shrivastava V K,Parvathi K. Transfer learning-based framework for classification of pest in tomato plants[J]. Applied Artificial Intelligence,2020,34(13):981-993.
[19]Mehta S,Rastegari M. MobileViT:light-weight,general-purpose,and mobile-friendly vision transformer[EB/OL]. (2021-10-05)[2023-11-01]. https://arxiv.org/abs/2110.02178.
[20]Vaswani A,Shazeer N,Parmar N,et al. Attention is all you need[EB/OL]. (2017-06-12)[2023-11-01]. https://arxiv.org/abs/1706.03762.
[21]Dosovitskiy A,Beyer L,Kolesnikov A,et al. An image is worth 16×16 words:transformers for image recognition at scale[EB/OL]. (2020-10-22)[2023-11-01]. https://arxiv.org.abs/2010.11929.
[22]Howard A,Sandler M,Chen B,et al. Searching for MobileNet v3[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV).Seoul,Korea (South):IEEE,2019:1314-1324.
[23]Touvron H,Cord M,Douze M,et al. Training data-efficient image transformers & distillation through attention[EB/OL]. (2020-12-23)[2023-11-01]. https://arxiv.org/abs/2012.12877.
[24]Howard A G,Zhu M L,Chen B,et al. MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-17)[2023-11-01]. https://arxiv.org/abs/1704.04861.
[26]Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems,Man,and Cybernetics,1979,9(1):62-66.
[27]Rother C,Kolmogorov V,Blake A. GrabCut:interactive foreground extraction using iterated graph cuts[M]//Seminal Graphics Papers:Pushing the Boundaries,Volume 2.New York,NY,USA:ACM,2023:593-598.
[1]张飞云.基于提升小波和学习向量量化神经网络的小麦病害图像识别[J].江苏农业科学,2013,41(05):103.
Zhang Feiyun.Wheat diseases image recognition based on lifting wavelet and learning vector quantization neural network[J].Jiangsu Agricultural Sciences,2013,41(20):103.