[1]吕亮,常向前,张舒. 水稻害虫绿色防控技术应用研究现状及展望[J]. 环境昆虫学报,2021,43(3):623-632.
[2]赵景,蔡万伦,沈栎阳,等. 水稻害虫绿色防控技术研究的发展现状及展望[J]. 华中农业大学学报(自然科学版),2022,41(1):92-104.
[3]刘万才,刘振东,黄冲,等. 近 10 年农作物主要病虫害发生危害情况的统计和分析[J]. 植物保护,2016,42(5):1-9.
[4]江顺,黄红星,莫里楠,等. 基于改进AlexNet的岭南水稻虫害识别方法研究[J]. 江苏农业科学,2023,51(23):187-195.
[5]梁万杰,曹宏鑫. 基于卷积神经网络的水稻虫害识别[J]. 江苏农业科学,2017,45(20):241-243,253.
[6]郑果,姜玉松,沈永林. 基于改进YOLO v7的水稻害虫识别方法[J]. 华中农业大学学报 (自然科学版),2023,42(3):143-151.
[7]曾伟辉,张文凤,陈鹏,等. 基于SCResNeSt的低分辨率水稻害虫图像识别方法[J]. 农业机械学报,2022,53(9):277-285.
[8]巨志勇,易成,周重臣,等. YOLO-Rice:一种基于YOLO v5的水稻虫害检测[J/OL]. 控制工程,2004:1-10(2024-03-15)[2024-05-30]. https://doi.org/10.14107/j.cnki.kzgc.20231000.
[9]崔金荣,魏文钊,赵敏. 基于改进MobileNet v3的水稻病害识别模型[J]. 农业机械学报,2023,54(11):217-224,276.
[10]Wu T Y,Tang S,Zhang R,et al. CGNet:a light-weight context guided network for semantic segmentation[J]. IEEE Transactions on Image Processing,2020,30:1169-1179.
[11]Chollet F. Xception:deep learning with depthwise separable convolutions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),Honolulu,HI:IEEE,2017:1251-1258.
[12]Redmon J,Divvala S,Girshick R,et al. You only look once:unified,real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,NV,USA:IEEE,2016:779-788.
[13]Redmon J,Farhadi A. YOLO9000:better,faster,stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,HI:IEEE,2017:7263-7271.
[14]Redmon J,Farhadi A. YOLO v3:an incremental improvement[EB/OL]. (2018-04-08)[2024-01-20]. http://arxiv.org/abs/1804.02767.
[15]Bochkovskiy A,Wang C Y,Liao H Y M. YOLO v4:optimal speed and accuracy of object detection[EB/OL]. [2024-01-20]. http://arxiv.org/abs/2004.10934.
[16]Ge Z,Liu S T,Wang F,et al. YOLOX:exceeding YOLO series in 2021[EB/OL]. (2021-07-18)[2024-01-20]. http://arxiv.org/abs/2107.08430.
[17]Li C Y,Li L L,Jiang H L,et al. YOLO v6:a single-stage object detection framework for industrial applications[EB/OL]. (2022-09-07)[2024-01-20]. http://arxiv.org/abs/2209.02976.
[18]Wang C Y,Bochkovskiy A,Liao H Y M. YOLO v7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Vancouver:IEEE,2023:7464-7475.
[19]Xu X Z,Jiang Y Q,Chen W H,et al. DAMO-YOLO:a report on real-time object detection design[EB/OL]. (2022-11-23)[2024-01-20]. http://arxiv.org/abs/2211.15444.
[20]杨佳昊,左昊轩,黄祺成,等. 基于YOLO v5s的作物叶片病害检测模型轻量化方法[J]. 农业机械学报,2023,54(增刊1):222-229.