|本期目录/Table of Contents|

[1]付渊迪,常菲菲,王馨曼,等.番茄响应低温胁迫的生理及分子机制研究进展[J].江苏农业科学,2024,52(21):17-24.
 Fu Yuandi,et al.Research progress on physiological and molecular mechanisms of tomato in response to low temperature stress[J].Jiangsu Agricultural Sciences,2024,52(21):17-24.
点击复制

番茄响应低温胁迫的生理及分子机制研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第21期
页码:
17-24
栏目:
专论与综述
出版日期:
2024-11-05

文章信息/Info

Title:
Research progress on physiological and molecular mechanisms of tomato in response to low temperature stress
作者:
付渊迪12常菲菲1王馨曼1徐晨曦2王全华2梁荣3朱明芬1
1.上海市农业科学院园艺研究所/上海市设施园艺技术重点实验室,上海 201403; 2.上海师范大学生命科学学院,上海 201400; 3.上海市松江区泖港镇农业农村服务中心,上海 201607
Author(s):
Fu Yuandiet al
关键词:
番茄低温胁迫调控分子机理耐冷性
Keywords:
-
分类号:
S641.201
DOI:
-
文献标志码:
A
摘要:
低温胁迫是作物栽培过程中常见的非生物胁迫之一,其严重影响植物生长、发育及作物产量。近年来,随着极端低温天气的频繁出现,番茄作为冷敏感作物,在栽培过程中经常遭受低温胁迫,进而影响其果实品质和产量等。植物遭受低温后会产生多种生理生化反应,并激活一系列复杂而又精准的调控机制来响应低温胁迫。因此,深入了解低温胁迫条件下番茄生命活动规律对抗冷性调控具有十分重要的意义。近年来,番茄中应对冷胁迫反应的生理生化机制以及参与冷胁迫反应转录网络的转录因子和调节因子被逐渐解析。本研究结合前人结果,从生长发育、渗透调节、抗氧化系统以及分子机制等多个层面对番茄响应低温胁迫途径进行归纳总结,以期为番茄耐冷性种质资源的筛选以及育种提供重要的理论依据。
Abstract:
-

参考文献/References:

[1]Liu J Y,Shi Y T,Yang S H. Insights into the regulation of C-repeat binding factors in plant cold signaling[J]. Journal of Integrative Plant Biology,2018,60(9):780-795.
[2]樊怀福,蒋卫杰,郭世荣. 低温对番茄幼苗植株生长和叶片光合作用的影响[J]. 江苏农业科学,2005,33(3):89-91.
[3]姜晶,张阳,唐广浩. 苗期夜间亚低温对番茄生长发育的影响及耐低温材料的筛选[J]. 江苏农业科学,2010,38(1):157-159.
[4]Klupczyńska E A,Pawn'owski T A. Regulation of seed dormancy and germination mechanisms in a changing environment[J]. International Journal of Molecular Sciences,2021,22(3):1357.
[5]Potaczek H,Kozik E U. Low temperature seed germination of several tomato genotypes[J]. Acta Physiologiae Plantarum,2000,22(3):293-295.
[6]Damaris R N,Lin Z Y,Yang P F,et al. The rice alpha-amylase,conserved regulator of seed maturation and germination[J]. International Journal of Molecular Sciences,2019,20(2):450.
[7]Farooq M,Hussain M,Nawaz A,et al. Seed priming improves chilling tolerance in chickpea by modulating germination metabolism,trehalose accumulation and carbon assimilation[J]. Plant Physiology and Biochemistry,2017,111:274-283.
[8]Zhang Y Y,Dai T Y,Liu Y H,et al. Effect of exogenous glycine betaine on the germination of tomato seeds under cold stress[J]. International Journal of Molecular Sciences,2022,23(18):10474.
[9]Verma V,Ravindran P,Kumar P P. Plant hormone-mediated regulation of stress responses[J]. BMC Plant Biology,2016,16:86.
[10]Song J W,Shang L L,Wang X,et al. MAPK11 regulates seed germination and ABA signaling in tomato by phosphorylating SnRKs[J]. Journal of Experimental Botany,2021,72(5):1677-1690
[11]Song J W,Shang L L,Chen S W,et al. Interactions between ShPP2-1,an F-box family gene,and ACR11A regulate cold tolerance of tomato[J]. Horticulture Research,2021,8(1):148.
[12]王荣青. 苗期亚低温对番茄生殖生长的影响及其低温鉴定方法研究[D]. 杭州:浙江大学,2007.
[13]Lee S H,Chung G C,Jang J Y,et al. Overexpression of PIP2;5 aquaporin alleviates effects of low root temperature on cell hydraulic conductivity and growth in Arabidopsis[J]. Plant Physiology,2012,159(1):479-488.
[14]王丽娟,李天来,崔娜. 夜间不同时段低温对番茄光合产物积累与分配的影响[J]. 沈阳农业大学学报,2006,37(6):811-815.
[15]Ma X C,Chen C,Yang M M,et al. Cold-regulated protein (SlCOR413IM1) confers chilling stress tolerance in tomato plants[J]. Plant Physiology and Biochemistry,2018,124:29-39.
[16]Meng S D,Xiang H Z,Yang X R,et al. Effects of low temperature on pedicel abscission and auxin synthesis key genes of tomato[J]. International Journal of Molecular Sciences,2023,24(11):9186.
[17]Pan C T,Yang D D,Zhao X L,et al. PIF4 negatively modulates cold tolerance in tomato anthers via temperature-dependent regulation of tapetal cell death[J]. The Plant Cell,2021,33(7):2320-2339.
[18]刘雪静,王艳,刘童光,等. 低温对番茄果实转色关键酶的影响[J]. 中国瓜菜,2015,28(1):19-22.
[19]Li Y B,Sun M H,Xiang H Z,et al. Low overnight temperature-induced gibberellin accumulation increases locule number in tomato[J]. International Journal of Molecular Sciences,2019,20(12):3042.
[20]Wu J,Sun W,Sun C,et al. Cold stress induces malformed tomato fruits by breaking the feedback loops of stem cell regulation in floral meristem[J]. New Phytologist,2023,237(6):2268-2283.
[21]王孝宣,李树德,东惠茹,等. 低温胁迫对番茄苗期和开花期脂肪酸的影响[J]. 园艺学报,1997,24(2):161-164.
[22]Sakamoto T,Murata N. Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress[J]. Current Opinion in Microbiology,2002,5(2):206-210.
[23]Fang Y J,Xiong L Z. General mechanisms of drought response and their application in drought resistance improvement in plants[J]. Cellular and Molecular Life Sciences,2015,72(4):673-689.
[24]高媛,齐晓花,杨景华,等. 高等植物对低温胁迫的响应研究[J]. 北方园艺,2007(10):58-61.
[25]张天鹏,杨兴洪. 甜菜碱提高植物抗逆性及促进生长发育研究进展[J]. 植物生理学报,2017,53(11):1955-1962.
[26]Li R,Zhang L X,Wang L,et al. Reduction of tomato-plant chilling tolerance by CRISPR-Cas9-mediated SlCBF1 mutagenesis[J]. Journal of Agricultural and Food Chemistry,2018,66(34):9042-9051.
[27]Wang M L,Hao J,Chen X H,et al. SlMYB102 expression enhances low-temperature stress resistance in tomato plants[J]. PeerJ,2020,8:e10059.
[28]Shu P,Li Y J,Sheng J P,et al. SlMAPK3 positively regulates the ethylene production of postharvest tomato fruits and is involved in ethylene-mediated cold tolerance[J]. Journal of Agricultural and Food Chemistry,2023:6003-6013.
[29]唐明佳,徐进,林锐,等. 番茄响应光温逆境的生理分子机制研究进展[J]. 园艺学报,2022,49(10):2174-2188.
[30]Gill S S,Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry,2010,48(12):909-930.
[31]Xing Y,Jia W S,Zhang J H. AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis[J]. The Plant Journal,2008,54(3):440-451.
[32]田国忠,李怀方,裘维蕃. 植物过氧化物酶研究进展[J]. 武汉植物学研究,2001,19(4):332-344.
[33]姜述君,常缨,范文艳,等. 温度逆境锻炼对低温胁迫下番茄幼苗细胞膜脂质过氧化产物及抗氧化酶活性的影响[J]. 中国农学通报,2007,23(10):444-448.
[34]Liu Y D,Shi Y,Zhu N,et al. SlGRAS4 mediates a novel regulatory pathway promoting chilling tolerance in tomato[J]. Plant Biotechnology Journal,2020,18(7):1620-1633.
[35]Shu P,Li Y J,Li Z Y,et al. Ferulic acid enhances chilling tolerance in tomato fruit by up-regulating the gene expression of CBF transcriptional pathway in MAPK3-dependent manner[J]. Postharvest Biology and Technology,2022,185:111775.
[36]Tripathy B C,Oelmüller R.Reactive oxygen species generation and signaling in plants[J]. Plant Signaling & Behavior,2012,7(12):1621-1633.
[37]Miura K,Sato A,Shiba H,et al. Accumulation of antioxidants and antioxidant activity in tomato,Solanum lycopersicum,are enhanced by the transcription factor SlICE1[J]. Plant Biotechnology,2012,29(3):261-269.
[38]Miura K,Shiba H,Ohta M,et al. SlICE1 encoding a MYC-type transcription factor controls cold tolerance in tomato,Solanum lycopersicum[J]. Plant Biotechnology,2012,29(3):253-260.
[39]Li Z L,Min D D,Fu X D,et al. The roles of SlMYC2 in regulating ascorbate-glutathione cycle mediated by methyl jasmonate in postharvest tomato fruits under cold stress[J]. Scientia Horticulturae,2021,288:110406.
[40]Zhou Y H,Yu J Q,Huang L F,et al. The relationship between CO2 assimilation,photosynthetic electron transport and water-water cycle in chill-exposed cucumber leaves under low light and subsequent recovery[J]. Plant,Cell & Environment,2004,27(12):1503-1514.
[41]李先文,李玲,林阳阳,等. 植物细胞叶绿体的低温反应[J]. 生物技术通报,2016,32(9):1-6.
[42]Karabudak T,Bor M,zdemir F,et al. Glycine betaine protects tomato (Solanum lycopersicum) plants at low temperature by inducing fatty acid desaturase7 and lipoxygenase gene expression[J]. Molecular Biology Reports,2014,41(3):1401-1410.
[43]Cai B B,Ning Y,Li Q,et al. Effects of the chloroplast fructose-1,6-bisphosphate aldolase gene on growth and low-temperature tolerance of tomato[J]. International Journal of Molecular Sciences,2022,23(2):728.
[44]Ding Y L,Shi Y T,Yang S H. Molecular regulation of plant responses to environmental temperatures[J]. Molecular Plant,2020,13(4):544-564.
[45]Gilmour S J,Fowler S G,Thomashow M F. Arabidopsis transcriptional activators CBF1,CBF2,and CBF3 have matching functional activities[J]. Plant Molecular Biology,2004,54(5):767-781.
[46]Zhang X,Fowler S G,Cheng H M,et al. Freezing-sensitive tomato has a functional CBF cold response pathway,but a CBF regulon that differs from that of freezing-tolerant Arabidopsis[J]. The Plant Journal,2004,39(6):905-919.
[47]刘静妍,施怡婷,杨淑华. CBF:平衡植物低温应答与生长发育的关键[J]. 植物学报,2017,52(6):689-698.
[48]Lin R,Song J N,Tang M J,et al. CALMODULIN6 negatively regulates cold tolerance by attenuating ICE1-dependent stress responses in tomato[J]. Plant Physiology,2023,193(3):2105-2121.
[49]Feng H L,Ma N N,Meng X,et al. A novel tomato MYC-type ICE1-like transcription factor,SlICE1a,confers cold,osmotic and salt tolerance in transgenic tobacco[J]. Plant Physiology and Biochemistry,2013,73:309-320.
[50]Ma N N,Zuo Y Q,Liang X Q,et al. The multiple stress-responsive transcription factor SlNAC1 improves the chilling tolerance of tomato[J]. Physiologia Plantarum,2013,149(4):474-486.
[51]Chen H Y,Chen X L,Chen D,et al. A comparison of the low temperature transcriptomes of two tomato genotypes that differ in freezing tolerance:Solanum lycopersicum and Solanum habrochaites[J]. BMC Plant Biology,2015,15:132.
[52]Zhang L Y,Jiang X C,Liu Q Y,et al. The HY5 and MYB15 transcription factors positively regulate cold tolerance in tomato via the CBF pathway[J]. Plant,Cell & Environment,2020,43(11):2712-2726.
[53]Wang F,Chen X X,Dong S J,et al. Crosstalk of PIF4 and DELLA modulates CBF transcript and hormone homeostasis in cold response in tomato[J]. Plant Biotechnology Journal,2020,18(4):1041-1055.
[54]Fang P P,Wang Y,Wang M Q,et al. Crosstalk between brassinosteroid and redox signaling contributes to the activation of CBF expression during cold responses in tomato[J]. Antioxidants,2021,10(4):509.
[55]王梦琪. 番茄乙烯响应因子ERF15在低温抗性中的作用[D]. 杭州:浙江大学,2021:48-49.
[56]Yu W Q,Jia X X,Shen L,et al. Ethylene perception influences the chilling injury and SlCBF1 gene expression during cold storage of tomato fruit[J]. Postharvest Biology and Technology,2023,204:112434.
[57]Shu P,Li Y J,Xiang L T,et al. SlNPR1 modulates chilling stress resistance in tomato plant by alleviating oxidative damage and affecting the synthesis of ferulic acid[J]. Scientia Horticulturae,2023,307:111486.
[58]Jia Y X,Ding Y L,Shi Y T,et al. The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis[J]. The New Phytologist,2016,212(2):345-353.
[59]Xiong L,Ishitani M,Lee H,et al. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression[J]. The Plant Cell,2001,13(9):2063-2083.
[60]Lv X Z,Li H Z,Chen X X,et al. The role of calcium-dependent protein kinase in hydrogen peroxide,nitric oxide and ABA-dependent cold acclimation[J]. Journal of Experimental Botany,2018,69(16):4127-4139.
[61]Zhang Z J,Huang R F. Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis[J]. Plant Molecular Biology,2010,73(3):241-249.
[62]Ding F,Wang C,Xu N,et al. The ethylene response factor SlERF. B8 triggers jasmonate biosynthesis to promote cold tolerance in tomato[J]. Environmental and Experimental Botany,2022,203:105073.
[63]Dong Y F,Tang M J,Huang Z L,et al. The miR164a-NAM3 module confers cold tolerance by inducing ethylene production in tomato[J]. The Plant Journal,2022,111(2):440-456.
[64]Zhang M,Zhang M Y,Wang J Y,et al. Salicylic acid regulates two photosystem Ⅱ protection pathways in tomato under chilling stress mediated by ETHYLENE INSENSITIVE 3-like proteins[J]. The Plant Journal,2023,114(6):1385-1404.
[65]Ding F,Ren L M,Xie F,et al. Jasmonate and melatonin act synergistically to potentiate cold tolerance in tomato plants[J]. Frontiers in Plant Science,2022,12:763284.
[66]吴宇欣,蔡昌杨,唐诗蓓,等. 植物响应低温的生长发育及分子机制研究进展[J]. 江苏农业科学,2023,51(19):1-9.
[67]Li H Z,Jiang X C,Lv X Z,et al. Tomato GLR3.3 and GLR3.5 mediate cold acclimation-induced chilling tolerance by regulating apoplastic H2O2 production and redox homeostasis[J]. Plant,Cell & Environment,2019,42(12):3326-3339.
[68]刁鹏飞. SlMYB41基因的克隆及其在番茄低温胁迫响应中的功能分析[D]. 泰安:山东农业大学,2020:56-57.
[69]Wang F,Wang X J,Zhang Y,et al. SlFHY3 and SlHY5 act compliantly to enhance cold tolerance through the integration of myo-inositol and light signaling in tomato[J]. The New Phytologist,2022,233(5):2127-2143.
[70]Wang G D,Xu X P,Wang H,et al. A tomato transcription factor,SlDREB3 enhances the tolerance to chilling in transgenic tomato[J]. Plant Physiology and Biochemistry,2019,142:254-262.
[71]Wang F,Guo Z X,Li H Z,et al. Phytochrome A and B function antagonistically to regulate cold tolerance via abscisic acid-dependent jasmonate signaling[J]. Plant Physiology,2016,170(1):459-471.
[72]Xia X J,Fang P P,Guo X,et al. Brassinosteroid-mediated apoplastic H2O2-glutaredoxin 12/14 cascade regulates antioxidant capacity in response to chilling in tomato[J]. Plant,Cell & Environment,2018,41(5):1052-1064.
[73]Min D D,Zhou J X,Li J Z,et al. SlMYC2 targeted regulation of polyamines biosynthesis contributes to methyl jasmonate-induced chilling tolerance in tomato fruit[J]. Postharvest Biology and Technology,2021,174:111443.
[74]Wang M L,Zhang S X,Ding F. Melatonin mitigates chilling-induced oxidative stress and photosynthesis inhibition in tomato plants[J]. Antioxidants,2020,9(3):218.

相似文献/References:

[1]何从亮,毛久庚,甘小虎,等.玻璃温室番茄长季节基质袋栽培技术[J].江苏农业科学,2013,41(04):158.
[2]王红亮,陈丽丽.低温胁迫对9种绿化树木相对电导率的影响[J].江苏农业科学,2013,41(04):167.
[3]沙向红,严建萍.低温胁迫对幼苗期棉花根系ADHa与BADH表达的影响[J].江苏农业科学,2013,41(08):37.
 Sha Xianghong,et al.Effect of low temperature stress on expression of ADHa and BADH gene in root of cotton seedlings[J].Jiangsu Agricultural Sciences,2013,41(21):37.
[4]李永灿,余文贵,陈怀谷,等.番茄灰霉病菌产毒条件优化[J].江苏农业科学,2013,41(05):94.
 Li Yongcan,et al.Optimization of toxigenic conditions of tomato Botrytis cinerea[J].Jiangsu Agricultural Sciences,2013,41(21):94.
[5]张志,徐洪国,王世发,等.低温胁迫对黄瓜幼苗生理指标的影响[J].江苏农业科学,2013,41(05):126.
 Zhang Zhi,et al.Effect of low temperature stress on physiological indicators of cucumber seedings[J].Jiangsu Agricultural Sciences,2013,41(21):126.
[6]赵秋月,甘潇,张广臣.Na2CO3胁迫对番茄幼苗生长的影响[J].江苏农业科学,2013,41(05):128.
 Zhao Qiuyue,et al.Effect of Na2CO3 stress on growth of tomato seedlings[J].Jiangsu Agricultural Sciences,2013,41(21):128.
[7]耿德刚,徐俊伟,戈振超,等.温室大棚番茄滴灌试验研究及效益分析[J].江苏农业科学,2013,41(05):132.
 Geng Degang,et al.Drip irrigation experimental and benefit analysis on greenhouse tomato[J].Jiangsu Agricultural Sciences,2013,41(21):132.
[8]杜中平,聂书明.不同配方基质对番茄生长特性、光合特性及产量的影响[J].江苏农业科学,2013,41(05):138.
 Du Zhongping,et al.Effects of different substrates on growth,photosynthetic characteristics and yield of tomato[J].Jiangsu Agricultural Sciences,2013,41(21):138.
[9]赵河,毛秀杰,叶景学.抗叶霉病不同基因型番茄的光合特性[J].江苏农业科学,2014,42(11):185.
 Zhao He,et al(8).Photosynthetic characteristics of different genotypes of tomato with resistance to leaf mold[J].Jiangsu Agricultural Sciences,2014,42(21):185.
[10]戴红燕,华劲松,张荣萍,等.低温胁迫对高原粳稻幼苗生长的影响[J].江苏农业科学,2014,42(11):85.
 Dai Hongyan,et al(8).Effect of low temperature stress on seedling growth of plateau japonica rice[J].Jiangsu Agricultural Sciences,2014,42(21):85.
[11]王玉昆,赵 敏,杜彩云,等.外源物质引发处理对番茄幼苗耐冷性的影响[J].江苏农业科学,2015,43(02):160.
 Wang Yukun,et al.Effect of extraneous substance priming on chilling tolerance of tomato seedlings[J].Jiangsu Agricultural Sciences,2015,43(21):160.
[12]张琴林,张佳蕊,郭仰东,等.低温胁迫下番茄SlMYB44-like基因的功能分析[J].江苏农业科学,2023,51(19):24.
 Zhang Qinlin,et al.Functional analysis of SlMYB44-like gene in tomato under cold stress[J].Jiangsu Agricultural Sciences,2023,51(21):24.
[13]郑亚妮,杨婧宇,李柔柔,等.番茄非生物胁迫响应基因研究现状[J].江苏农业科学,2025,53(4):1.
 Zheng Yani,et al.Research status of abiotic stress response genes in tomatoes[J].Jiangsu Agricultural Sciences,2025,53(21):1.

备注/Memo

备注/Memo:
收稿日期:2023-11-27
基金项目:上海市农业科技创新项目(编号:沪农科 K2023009)。
作者简介:付渊迪(1998—),男,河南郏县人,硕士研究生,研究方向为蔬菜耐冷机理研究。E-mail:2806047288@qq.com。
通信作者:朱明芬,硕士,农艺师,研究方向为蔬菜育种研究。E-mail:mingfen0825@163.com。
更新日期/Last Update: 2024-11-05