[1]Smith P,Martino D,Cai Z C,et al. Greenhouse gas mitigation in agriculture[J]. Philosophical Transactions of the Royal Society of London.Series B,Biological Sciences,2008,363(1492):789-813.
[2]Linquist B,van Groenigen K J,Adviento-Borbe M A,et al. An agronomic assessment of greenhouse gas emissions from major cereal crops[J]. Global Change Biology,2012,18(1):194-209.
[3]Su J,Hu C,Yan X,et al. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice[J]. Nature,2015,523(7562):602-606.
[4]Edenhofer O,Pichs-Madruga R,Sokona Y,et al. The Physical Science Basis.Contribution of Working GroupⅠ to the fifth assessment report of the intergovernmental panel on climate change[M]. Climate Change 2013.United Kingdom and New York:Cambridge University Press,2013.
[5]FAO. Food and Agriculture Organization of the United Nations Corporate Statistical Database[Z/OL]. [2023-11-01]. http://faostat.fao.org/beta/en/.
[6]秦尊文.以“虾稻共作” 模式为抓手推进体制机制创新:潜江市全国中小城市综合改革的观察与思考[J]. 中国发展,2016,16(6):51-56.
[7]曹凑贵,江洋,汪金平,等. 稻虾共作模式的“双刃性” 及可持续发展策略[J]. 中国生态农业学报,2017,25(9):1245-1253.
[8]唐建军,李巍,吕修涛,等. 中国稻渔综合种养产业的发展现状与若干思考[J]. 中国稻米,2020,26(5):1-10.
[9]胡亮亮,唐建军,张剑,等. 稻-鱼系统的发展与未来思考[J]. 中国生态农业学报,2015,23(3):268-275.
[10]农业农村部渔业渔政管理局,全国水产技术推广总站,中国水产学会.中国稻渔综合种养产业发展报告(2020)[J]. 中国水产,2020(10):12-19.
[11]于秀娟,郝向举,党子乔,等. 中国稻渔综合种养产业发展报告(2023)[J]. 中国水产,2023(8):19-26.
[12]丁伟华. 中国稻田水产养殖的潜力和经济效益分析[D]. 杭州:浙江大学,2014.
[13]谢坚. 农田物种间相互作用的生态系统功能:以全球重要农业文化遗产“稻鱼系统” 为研究范例[D]. 杭州:浙江大学,2011.
[14]胡亮亮. 农业生物种间互惠的生态系统功能[D]. 杭州:浙江大学,2014.
[15]Stockmann U,Adams M A,Crawford J W,et al. The knowns,known unknowns and unknowns of sequestration of soil organic carbon[J]. Agriculture,Ecosystems & Environment,2013,164:80-99.
[16]Lal R. Challenges and opportunities in soil organic matter research[J]. European Journal of Soil Science,2009,60(2):158-169.
[17]潘根兴,李恋卿,郑聚锋,等. 土壤碳循环研究及中国稻田土壤固碳研究的进展与问题[J]. 土壤学报,2008,45(5):901-914.
[18]吴金水,李勇,童成立,等. 亚热带水稻土碳循环的生物地球化学特点与长期固碳效应[J]. 农业现代化研究,2018,39(6):895-906.
[19]李丽娜,闫淋淋,曹凑贵,等. 稻虾共作系统中水稻生长及养分吸收对秸秆还田与投食的响应[J]. 华中农业大学学报,2020,39(2):8-16.
[20]Xie J,Hu L L,Tang J J,et al. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system[J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(50):E1381-E1387.
[21]陈晓云,孙文涛,于凤泉,等. 稻蟹生态种养模式对稻田土壤肥力及生产效益的影响[J]. 土壤通报,2021,52(5):1165-1172.
[22]Guo L,Hu L L,Zhao L F,et al. Coupling rice with fish for sustainable yields and soil fertility in China[J]. Rice Science,2020,27(3):175-184.
[23]Yuan P L,Wang J P,Li C F,et al. Soil quality indicators of integrated rice-crayfish farming in the Jianghan Plain,China using a minimum data set[J]. Soil and Tillage Research,2020,204:104732.
[24]Si G H,Peng C L,Yuan J F,et al. Changes in soil microbial community composition and organic carbon fractions in an integrated rice-crayfish farming system in subtropical China[J]. Scientific Reports,2017,7(1):2856.
[25]吕广动,黄璜,梁玉刚,等. 紫云英还田+稻鱼共生对水稻土壤养分及产量的影响[J]. 西南农业学报,2020,33(8):1729-1735.
[26]周榆淇,邹冬生,王安岽,等. 长期淹水条件下稻鱼复合种养对土壤养分和酶活性的影响[J]. 农业现代化研究,2022,43(5):911-920.
[27]肖力婷,杨慧林,赖政,等. 稻田土壤微生物群落对稻鳖共作模式的响应特征[J]. 农业工程学报,2022,38(24):102-109.
[28]杨飞翔,黄璜,陈灿,等. 稻鳖共作模式中的土壤养分动态变化及产量形成[J]. 作物研究,2019,33(5):402-407.
[29]陈松文,刘天奇,曹凑贵,等. 水稻生产碳中和现状及低碳稻作技术策略[J]. 华中农业大学学报,2021,40(3):3-12.
[30]夏龙龙,颜晓元,蔡祖聪. 我国农田土壤温室气体减排和有机碳固定的研究进展及展望[J]. 农业环境科学学报,2020,39(4):834-841.
[31]Lu F.How can straw incorporation management impact on soil carbon storage?A meta-analysis[J]. Mitigation and Adaptation Strategies for Global Change,2015,20(8):1545-1568.
[32]Villamil M B,Little J,Nafziger E D.Corn residue,tillage,and nitrogen rate effects on soil properties[J]. Soil and Tillage Research,2015,151:61-66.
[33]李威,成永旭,孙颖,等. 不同秸秆还田量对春季稻虾田水质、土壤养分及酶活性的影响[J]. 南京农业大学学报,2023,46(1):83-91.
[34]朱秀秀. 稻虾共作模式下秸秆还田对土壤有机碳库稳定性影响[D]. 荆州:长江大学,2022.
[35]Xia L L,Lam S K,Yan X Y,et al. How does recycling of livestock manure in agroecosystems affect crop productivity,reactive nitrogen losses,and soil carbon balance?[J]. Environmental Science & Technology,2017,51(13):7450-7457.
[36]佀国涵,朱秀秀,彭成林,等. 稻虾共作模式下克氏原螯虾对水稻土团聚体特征及有机碳分布的影响[J]. 农业环境科学学报,2024,43(3):590-596.
[37]佀国涵,彭成林,徐祥玉,等. 稻虾共作模式对涝渍稻田土壤理化性状的影响[J]. 中国生态农业学报,2017,25(1):61-68.
[38]Schulz E,Breulmann M,Boettger T,et al. Effect of organic matter input on functional pools of soil organic carbon in a long-term double rice crop experiment in China[J]. European Journal of Soil Science,2011,62(1):134-143.
[39]Wang X H,Yang H S,Liu J,et al. Effects of ditch-buried straw return on soil organic carbon and rice yields in a rice-wheat rotation system[J]. Catena,2015,127:56-63.
[40]Zhai S L,Xu C F,Wu Y C,et al. Long-term ditch-buried straw return alters soil carbon sequestration,nitrogen availability and grain production in a rice-wheat rotation system[J]. Crop and Pasture Science,2021,72(4):245-254.
[41]Bruun E W,Ambus P,Egsgaard H,et al. Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics[J]. Soil Biology and Biochemistry,2012,46:73-79.
[42]Huang R,Tian D,Liu J,et al. Responses of soil carbon pool and soil aggregates associated organic carbon to straw and straw-derived biochar addition in a dryland cropping mesocosm system[J]. Agriculture,Ecosystems & Environment,2018,265:576-586.
[43]Lehmann J,Joseph S. Biochar for environmental management:science,technology and implementation[M]. London:Routledge,2015.
[44]Sui Y H,Gao J P,Liu C H,et al. Interactive effects of straw-derived biochar and N fertilization on soil C storage and rice productivity in rice paddies of Northeast China[J]. Science of the Total Environment,2016,544:203-210.
[45]梁玉刚,余政军,赵杨,等. 稻田养鱼模式综述[J]. 生态学杂志,2023,42(11):2747-2755.
[46]符自为,周曙光,李永吉,等. 常见水草在鱼虾蟹养殖中的作用小结[J]. 当代水产,2022,47(7):64-67.
[47]马建. 稻虾综合种养及水草栽培技术[J]. 贵州畜牧兽医,2021,45(5):31-33.
[48]Hu N J,Liu C H,Chen Q,et al. Life cycle environmental impact assessment of rice-crayfish integrated system:a case study[J]. Journal of Cleaner Production,2021,280:124440.
[49]叶佩,宋春燕,刘凯文,等. 江汉平原不同稻作模式下温室气体排放特征[J]. 应用气象学报,2022,33(6):748-758.
[50]陈璐,陈灿,黄璜,等. 厢作免耕下生态种养对稻田CH4和N2O排放的影响[J]. 农业环境科学学报,2021,40(6):1354-1365.
[51]Datta A,Nayak D R,Sinhababu D P,et al. Methane and nitrous oxide emissions from an integrated rainfed rice-fish farming system of Eastern India[J]. Agriculture,Ecosystems & Environment,2009,129(1/2/3):228-237.
[52]张怡彬,徐洋,王洪媛,等. 稻蟹共生系统温室气体排放特征及其影响因素[J]. 农业资源与环境学报,2022,39(5):931-939.
[53]Wang A,Ma X Z,Xu J,et al. Methane and nitrous oxide emissions in rice-crab culture systems of Northeast China[J]. Aquaculture and Fisheries,2019,4(4):134-141.
[54]戴然欣,赵璐峰,唐建军,等. 稻渔系统碳固持与甲烷排放特征[J]. 中国生态农业学报(中英文),2022,30(4):616-629.
[55]Sun Z C,Guo Y,Li C F,et al. Effects of straw returning and feeding on greenhouse gas emissions from integrated rice-crayfish farming in Jianghan Plain,China[J]. Environmental Science and Pollution Research,2019,26(12):11710-11718.
[56]徐祥玉,张敏敏,彭成林,等. 稻虾共作对秸秆还田后稻田温室气体排放的影响[J]. 中国生态农业学报,2017,25(11):1591-1603.
[57]Frei M,Razzak M A,Hossain M M,et al. Methane emissions and related physicochemical soil and water parameters in rice-fish systems in Bangladesh[J]. Agriculture,Ecosystems & Environment,2007,120(2/3/4):391-398.
[58]Frei M,Becker K. Integrated rice-fish production and methane emission under greenhouse conditions[J]. Agriculture,Ecosystems & Environment,2005,107(1):51-56.
[59]展茗,曹凑贵,汪金平,等. 复合稻田生态系统温室气体交换及其综合增温潜势[J]. 生态学报,2008,28(11):5461-5468.
[60]刘小燕,黄璜,杨治平,等. 稻鸭鱼共栖生态系统CH4排放规律研究[J]. 生态环境,2006,15(2):265-269.
[61]Hu Z Q,Wu S,Ji C,et al. A comparison of methane emissions following rice paddies conversion to crab-fish farming wetlands in Southeast China[J]. Environmental Science and Pollution Research,2016,23(2):1505-1515.
[62]袁伟玲,曹凑贵,李成芳,等. 稻鸭、稻鱼共作生态系统CH4和N2O温室效应及经济效益评估[J]. 中国农业科学,2009,42(6):2052-2060.
[63]张家宏,王桂良,黄维勤,等. 江苏里下河地区稻田生态种养创新模式及关键技术[J]. 湖南农业科学,2017(3):77-80.
[64]孟祥杰,黄璜,陈灿,等. 稻鳖生态种养技术及其研究进展[J]. 作物研究,2019,33(5):370-373.
[65]Hou J,Zhang D Y,Zhu J Q. Nutrient accumulation from excessive nutrient surplus caused by shifting from rice monoculture to rice-crayfish rotation[J]. Environmental Pollution,2021,271:116367.
[66]Malyan S K,Bhatia A,Kumar A,et al. Methane production,oxidation and mitigation:a mechanistic understanding and comprehensive evaluation of influencing factors[J]. Science of the Total Environment,2016,572:874-896.
[67]Azziz G,Monza J,Etchebehere C,et al. nirS- and nirK-type denitrifier communities are differentially affected by soil type,rice cultivar and water management[J]. European Journal of Soil Biology,2017,78:20-28.
[68]Zhao S Y,Wang Q,Zhou J M,et al. Linking abundance and community of microbial N2O-producers and N2O-reducers with enzymatic N2O production potential in a riparian zone[J]. Science of the Total Environment,2018,642:1090-1099.
[69]Guo L J,Lin W,Cao C G,et al. Integrated rice-crayfish farming system does not mitigate the global warming potential during rice season[J]. Science of the Total Environment,2023,867:161520.
[70]Bhattacharyya P,Sinhababu D P,Roy K S,et al. Effect of fish species on methane and nitrous oxide emission in relation to soil C,N pools and enzymatic activities in rainfed shallow lowland rice-fish farming system[J]. Agriculture,Ecosystems & Environment,2013,176:53-62.
[71]Pittelkow C M,Adviento-Borbe M A,Hill J E,et al. Yield-scaled global warming potential of annual nitrous oxide and methane emissions from continuously flooded rice in response to nitrogen input[J]. Agriculture,Ecosystems & Environment,2013,177:10-20.
[72]Pathak H,Bhatia A,Prasad S,et al. Emission of nitrous oxide from rice-wheat systems of Indo-Gangetic Plains of India[J]. Environmental Monitoring and Assessment,2002,77(2):163-178.
[73]le Mer J,Roger P. Production,oxidation,emission and consumption of methane by soils:a review[J]. European Journal of Soil Biology,2001,37(1):25-50.
[74]Schütz H,Seiler W,Conrad R. Processes involved in formation and emission of methane in rice paddies[J]. Biogeochemistry,1989,7(1):33-53.
[75]Nazaries L,Murrell J C,Millard P,et al. Methane,microbes and models:fundamental understanding of the soil methane cycle for future predictions[J]. Environmental Microbiology,2013,15(9):2395-2417.
[76]Kgel-Knabner I,Amelung W,Cao Z H,et al. Biogeochemistry of paddy soils[J]. Geoderma,2010,157(1/2):1-14.
[77]Anastacio P M,Correia A M,Menino J P,et al. Are rice seedlings affected by changes in water quality caused by crayfish?[J]. Annales De Limnologie-International Journal of Limnology,2005,41(1):1-6.
[78]Yu J X,Ren Y,Xu T,et al. Physicochemical water quality parameters in typical rice-crayfish integrated systems(RCIS) in China[J]. International Journal of Agricultural and Biological Engineering,2018,11(3):54-60.
[79]Minamikawa K,Sakai N. The practical use of water management based on soil redox potential for decreasing methane emission from a paddy field in Japan[J]. Agriculture,Ecosystems & Environment,2006,116(3/4):181-188.
[80]Hou A X,Chen G X,Wang Z P,et al. Methane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological processes[J]. Soil Science Society of America Journal,2000,64(6):2180-2186.
[81]Zou J W,Huang Y,Jiang J Y,et al. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China:Effects of water regime,crop residue,and fertilizer application[J]. Global Biogeochemical Cycles,2005,19(2):GB2021.
[82]Zhang G B,Yu H Y,Fan X F,et al. Carbon isotope fractionation reveals distinct process of CH4 emission from different compartments of paddy ecosystem[J]. Scientific Reports,2016,6:27065.
[83]Strack M,Waddington J M. Spatiotemporal variability in peatland subsurface methane dynamics[J]. Journal of Geophysical Research,2008,113:G02010.
[83]Strack M,Waddington J M. Spatiotemporal variability in peatland subsurface methane dynamics[J]. Journal of Geophysical Research:Biogeosciences,2008,113(G2):G02010.
[84]江瑜,管大海,张卫建. 水稻植株特性对稻田甲烷排放的影响及其机制的研究进展[J]. 中国生态农业学报,2018,26(2):175-181.
[85]丁会纳. 不同水稻品种甲烷和氧化亚氮排放的差异及其机理研究[D]. 武汉:华中农业大学,2022.
[86]朱相成. 增密减氮对东北水稻产量和氮肥效率及温室气体排放的影响[D]. 北京:中国农业科学院,2015.
[87]郭慧娟. 氮密调控对双季稻田温室气体排放和资源利用效率的影响[D]. 长沙:湖南农业大学,2021.
[88]罗加伟,钱开国,徐博,等. 稻虾共作模式下龙虾品种和养殖密度对CH4和N2O排放的影响[J]. 农业环境科学学报,2023,42(8):1852-1859.
[89]徐祥玉,张敏敏,彭成林,等. 稻草还田下非稻季持续淹水对稻季CH4和CO2排放的影响[J]. 农业资源与环境学报,2017,34(2):145-152.
[90]Joseph S D,Camps-Arbestain M,Lin Y,et al. An investigation into the reactions of biochar in soil[J]. Soil Research,2010,48(7):501-515.
[91]Lehmann J. Bio-energy in the black[J]. Frontiers in Ecology and the Environment,2007,5(7):381-387.
[92]常国亮,徐建明,卢彩萍,等. 稻虾连作稻秸还田下克氏原螯虾养成期稻田肥力变化初步研究[J]. 江苏农业科学,2022,50(16):235-238.
[93]Shen J L,Tang H,Liu J Y,et al. Contrasting effects of straw and straw-derived biochar amendments on greenhouse gas emissions within double rice cropping systems[J]. Agriculture,Ecosystems & Environment,2014,188:264-274.
[94]Jeffery S,Verheijen F G A,Kammann C,et al. Biochar effects on methane emissions from soils:a meta-analysis[J]. Soil Biology and Biochemistry,2016,101:251-258.
[95]Feng Y Z,Xu Y P,Yu Y C,et al. Mechanisms of biochar decreasing methane emission from Chinese paddy soils[J]. Soil Biology and Biochemistry,2012,46:80-88.
[96]Liu Y X,Yang M,Wu Y M,et al. Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar[J]. Journal of Soils and Sediments,2011,11(6):930-939.
[97]Si G H,Yuan J F,Xu X Y,et al. Effects of an integrated rice-crayfish farming system on soil organic carbon,enzyme activity,and microbial diversity in waterlogged paddy soil[J]. Acta Ecologica Sinica,2018,38(1):29-35.
[98]张坤阳. 中华绒螯蟹(Eriocheir sinensis)养殖系统生命周期的碳足迹测算[D]. 大连:大连海洋大学,2023.
[1]马旭俊,刘春娟,吕世博,等.绿色荧光蛋白基因在水稻遗传转化中的应用[J].江苏农业科学,2013,41(04):35.
[2]李岳峰,居立海,张来运,等.水分胁迫下丛枝菌根对水稻/绿豆间作系统
作物生长和氮磷吸收的影响[J].江苏农业科学,2013,41(04):58.
[3]崔月峰,孙国才,王桂艳,等.不同施氮水平和前氮后移措施对水稻产量
及氮素利用率的影响[J].江苏农业科学,2013,41(04):66.
[4]张其蓉,宋发菊,田进山,等.长江中下游稻区水稻区域试验品种抗稻瘟病鉴定与评价[J].江苏农业科学,2013,41(04):92.
[5]王麒,张小明,卞景阳,等.不同插秧密度对黑龙江省第二积温带水稻产量及产量构成的影响[J].江苏农业科学,2013,41(05):60.
Wang Qi,et al.Effect of different transplanting density on yield and yield component of rice in second temperature zone of Heilongjiang Province[J].Jiangsu Agricultural Sciences,2013,41(23):60.
[6]张国良,张森林,丁秀文,等.基质厚度和含水量对水稻育秧的影响[J].江苏农业科学,2013,41(05):62.
Zhang Guoliang,et al.Effects of substrate thickness and water content on growth of rice seedlings[J].Jiangsu Agricultural Sciences,2013,41(23):62.
[7]赵忠宝,朱清海.稻-蟹-鳅生态系统的能值分析[J].江苏农业科学,2013,41(05):349.
Zhao Zhongbao,et al.Emergy analysis of paddy-crab-loach ecosystem[J].Jiangsu Agricultural Sciences,2013,41(23):349.
[8]杨红福,姚克兵,束兆林,等.甲氧基丙烯酸酯类杀菌剂对水稻恶苗病的田间药效[J].江苏农业科学,2014,42(12):166.
Yang Hongfu,et al.Field efficacy of strobilurin fungicides against rice bakanae disease[J].Jiangsu Agricultural Sciences,2014,42(23):166.
[9]唐成,陈露,安敏敏,等.稻瘟病诱导水稻幼苗叶片氧化还原系统的特征谱变化[J].江苏农业科学,2014,42(12):141.
Tang Cheng,et al.Characteristic spectral changes of redox homeostasis system in rice seedling leaves induced by rice blast[J].Jiangsu Agricultural Sciences,2014,42(23):141.
[10]万云龙.优质水稻—春甘蓝轮作高效栽培模式[J].江苏农业科学,2014,42(12):90.
Wan Yunlong.Efficient cultivation mode of high quality rice-spring cabbage rotation[J].Jiangsu Agricultural Sciences,2014,42(23):90.