[1]Zhao S S,Zhang Q K,Liu M Y,et al. Regulation of plant responses to salt stress[J]. International Journal of Molecular Sciences,2021,22:4609.
[2]Wang G Z,Ni G,Feng G,et al. Saline-alkali soil reclamation and utilization in China:progress and prospects[J]. Frontiers of Agricultural Science and Engineering,2024,11(2):216-228.
[3]Zelm E,Zhang Y,Testerink C. Salt tolerance mechanisms of plants[J]. Annual Review of Plant Biologyl,2020,71:403-433.
[4]Deinlein U,Stephan A B,Horie T,et al. Plant salt-tolerance mechanisms[J]. Trends in Plant Science,2014,19(6):371-379.
[5]Rubio F,Gassmann W,Schroeder J I. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance[J]. Science,1995,270(5242):1660-1663.
[6]Haro R,Bauelos M A,Rodríguez-Navarro A. High-affinity sodium uptake in land plants[J]. Plant and Cell Physiology,2010,51(1):68-79.
[7]Rus A,Yokoi S,Sharkhuu A,et al. AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots[J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98(24):14150-14155.
[8]Uchiyama T,Saito S,Yamanashi T,et al. The HKT1 Na+ transporter protects plant fertility by decreasing Na+ content in stamen filaments[J]. Science Advances,2023,9(22):5495.
[9]Munns R,James R A,Xu B,et al. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene[J]. Nature Biotechnology,2012,30(4):360-364.
[10]Huang L,Kuang L H,Wu L Y,et al. The HKT transporter HvHKT1;5 negatively regulates salt tolerance[J]. Plant Physiology,2020,182(1):584-596.
[11]Bassil E,Tajima H,Liang Y C,et al. The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth,flower development,and reproduction[J]. The Plant Cell,2011,23(9):3482–3497.
[12]Fukuda A,Nakamura A,Hara N,et al. Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes[J]. Planta,2011,233(1):175-188.
[13]Jabeen Z,Irshad F,Hussain N,et al. NHX-Type Na+/H+ antiporter gene expression under different salt levels and allelic diversity of HvNHX in wild and cultivated barleys[J]. Frontiers in Genetics,2022,12:809988.
[14]Fu L B,Wu D Z,Zhang X C,et al. Vacuolar H+-pyrophosphatase HVP10 enhances salt tolerance via promoting Na+translocation into root vacuoles[J]. Plant Physiology,2022,188(2):1248-1263.
[15]祁云霞,刘永斌,荣威恒. 转录组研究新技术:RNA-Seq及其应用遗传[J]. 2011,33(11):1191-1202.
[16]李小白,向林,罗洁,等. 转录组测序(RNA-Seq)策略及其数据在分子标记开发上的应用[J].中国细胞生物学学报,2013,35(5):720-726.
[17]董明,再吐尼古丽·库尔班,吕芃,等. 高粱苗期耐盐性转录组分析和基因挖掘[J].中国农业科学,2019,52(22):3987-4001.
[18]刘佳月,李永宏,王照兰. 转录组在植物抗盐育种中的应用[J].分子植物育种,2020,18(1):125-133.
[19]Zhu J,Fan Y,Li C D. et al. Candidate genes for salinity tolerance in barley revealed by RNA-seq analysis of near-isogenic lines[J]. Plant Growth Regulation,2020,92:571–582.
[20]Zhu J,Fan Y,Shabala S,et al. Understanding mechanisms of salinity tolerance in barley by proteomic and biochemical analysis of near-isogenic lines[J]. International Journal of Molecular Sciences,2020,21(4):1516.
[21]段俊枝,杨翠苹,王楠,等. WRKY转录因子在植物耐盐基因工程中的应用进展[J]. 江苏农业科学,2023,51(5):71-80.
[22]Kong W L,Sun T,Zhang C H,et al. Comparative transcriptome analysis reveals the mechanisms underlying differences in salt tolerance between indica and japonica rice at seedling stage[J]. Frontiers in Plant Science,2021,12:725436.
[23]Zhang Y X,Tian H D,Chen D,et al. Cysteine-rich receptor-like protein kinases:emerging regulators of plant stress responses[J]. Trends in Plant Science,2023,28(7):776-794.
[24]Shinozawa A,Otake R,Takezawa D,et al. SnRK2 protein kinases represent an ancient system in plants for adaptation to a terrestrial environment[J]. Communications Biology 2019,2:30.
[25]Kim S,Park S I,Kwon H,et al. The rice abscisic acid-responsive RING finger E3 ligase OsRF1 targets OsPP2C09 for degradation and confers drought and salinity tolerance in rice[J]. Frontiers in Plant Science,2022,12:797940.
[26]Wu Q,Zhang X,Peirats-Llobet M,et al. Ubiquitin ligases RGLG1 and RGLG5 regulate abscisic acid signaling by controlling the turnover of phosphatase PP2CA[J]. Plant Cell,2016,28(9):2178-2196.
[27]Zhu J,Fan Y,Shabala S,et al. Understanding mechanisms of salinity tolerance in barley by proteomic and biochemical analysis of near-isogenic lines[J]. International Journal of Molecular Sciences,2020,21(4):1516.
[28]Chang L L,Guo A P,Jin X,et al. The beta subunit of glyceraldehyde 3-phosphate dehydrogenase is an important factor for maintaining photosynthesis and plant development under salt stress-based on an integrative analysis of the structural,physiological and proteomic changes in chloroplasts in Thellungiella halophila[J]. Plant Science,2015 236:223-238.
[29]Hafeez A,Ge Q,Zhang Q,et al. Multi-responses of O-methyltransferase genes to salt stress and fiber development of Gossypium species[J]. BMC Plant Biology,2021,21(1):37.
[1]刘骥,王燕,郭建华,等.盐胁迫诱导的TabZIP60转录因子的筛选与分析[J].江苏农业科学,2013,41(08):18.
Liu Ji,et al.Screening and analysis of TabZIP60 transcription factor induced by salt stress[J].Jiangsu Agricultural Sciences,2013,41(24):18.
[2]冯蕾,刘国荣,侯晓杰,等.NaCl胁迫对枳椇和皂荚生长及渗透调节物质的影响[J].江苏农业科学,2014,42(12):230.
Feng Lei,et al.Effects of NaCl stress on growth and osmotic regulation of Hovenia dulcia and Gleditsia sinensis[J].Jiangsu Agricultural Sciences,2014,42(24):230.
[3]陈阳春,张本厚,贾明良,等.盐胁迫对半夏组培苗生长及生理指标的影响[J].江苏农业科学,2014,42(12):62.
Chen Yangchun,et al.Effects of salt stress on growth and physiological indices of tissue culture seedlings of Pinellia ternata (Thunb.) Breit.[J].Jiangsu Agricultural Sciences,2014,42(24):62.
[4]王鑫,孔祥生.盐胁迫对流苏树愈伤组织生理生化特性的影响[J].江苏农业科学,2014,42(11):54.
Wang Xin,et al().Effect of salt stress on physio-biochemical indices of Chionanthus retusus callus[J].Jiangsu Agricultural Sciences,2014,42(24):54.
[5]吕艳伟,何文慧,陈雨鸥,等.盐胁迫对小麦幼苗光合色素含量和细胞膜的影响[J].江苏农业科学,2013,41(06):74.
Lü Yanwei,et al.Effects of salt stress on photosynthetic chlorophyll content and cell membrane in wheat[J].Jiangsu Agricultural Sciences,2013,41(24):74.
[6]包奇军,柳小宁,张华瑜,等.NaCl与NaHCO3+Na2CO3对不同基因型啤酒大麦萌发期胁迫效应的比较[J].江苏农业科学,2014,42(10):92.
Bao Qijun,et al.Comparison of stress effects of NaCl and NaHCO3+Na2CO3 on different genotypes of malting barley seeds during germination stage[J].Jiangsu Agricultural Sciences,2014,42(24):92.
[7]谷文英,牟莹莹,钱泽,等.外源甜菜碱对盐胁迫下菊苣幼苗线粒体膜氧化损伤的缓解作用[J].江苏农业科学,2013,41(07):198.
Gu Wenying,et al.Mitigative effect of exogenous glycine betaine on mitochondrial membrane oxidative damage of chicory seedling under salt stress[J].Jiangsu Agricultural Sciences,2013,41(24):198.
[8]杨永恒,黄苏珍.NaCl胁迫下甜菊不同耐盐性单株的生长及生理响应[J].江苏农业科学,2013,41(08):87.
Yang Yongheng,et al.Growth and physiological response of Stevia rebaudiana Bertoni plants with different salt tolerance under salt stress[J].Jiangsu Agricultural Sciences,2013,41(24):87.
[9]陈罡,管安琴,卢昱宇,等.盐胁迫对不同基因型芦笋萌发的影响及盐碱地育苗技术[J].江苏农业科学,2014,42(08):136.
Chen Gang,et al.Effect of salt stress on germination of different genotypes of asparagus and seedling-raising techniques of asparagus on saline-alkali soil[J].Jiangsu Agricultural Sciences,2014,42(24):136.
[10]赵秋月,张广臣.番茄对碱性盐胁迫的响应机理[J].江苏农业科学,2014,42(08):139.
Zhao Qiuyue,et al.Response mechanism of tomato to alkaline salt stress[J].Jiangsu Agricultural Sciences,2014,42(24):139.
[11]乔海龙,陈和,陈健,等.盐胁迫对不同大麦品种产量及品质的影响[J].江苏农业科学,2014,42(09):83.
Qiao Hailong,et al.Effects of salt stress on yield and quality of different barley varieties[J].Jiangsu Agricultural Sciences,2014,42(24):83.