|本期目录/Table of Contents|

[1]张蓓,刘贺娟,赵洋,等.辣椒响应低温胁迫的研究进展[J].江苏农业科学,2025,53(4):8-16.
 Zhang Bei,et al.Research progress on response of pepper to low temperature stress[J].Jiangsu Agricultural Sciences,2025,53(4):8-16.
点击复制

辣椒响应低温胁迫的研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第53卷
期数:
2025年第4期
页码:
8-16
栏目:
专论与综述
出版日期:
2025-02-20

文章信息/Info

Title:
Research progress on response of pepper to low temperature stress
作者:
张蓓刘贺娟赵洋郭志伟孙强甄俊琦王童童程相杰任福森
新乡市农业科学院,河南新乡 453000
Author(s):
Zhang Beiet al
关键词:
辣椒低温胁迫组学机制响应基因进展
Keywords:
-
分类号:
S641.301
DOI:
-
文献标志码:
A
摘要:
辣椒是一种十分重要的蔬菜作物和调味品,因其具有独特的辛辣味和丰富的营养物质而深受人们的喜爱,具有巨大的经济价值。近年来随着消费需求的增加,辣椒的种植面积也在不断扩增,但是辣椒的产量常常受到外界环境的影响。辣椒是喜温性蔬菜作物,低温胁迫严重限制其生长和发育,制约了辣椒产业的发展。辣椒遭受低温胁迫时,通过多个信号转导途径调节耐冷相关基因的表达,提高植株的耐冷性。因此,提高辣椒的耐低温性,挖掘辣椒低温胁迫响应基因,剖析辣椒低温胁迫响应基因的作用机制,对培育耐低温胁迫辣椒品种具有十分重要的现实意义和应用价值。从辣椒响应低温胁迫的组学机制、关键基因以及提高辣椒的抗冷性措施等方面进行综述,初步阐述了辣椒低温胁迫响应基因及其作用机制,探讨了该领域研究中存在的问题和今后研究的重点,以期为进一步揭示辣椒响应低温胁迫的分子调控机制及耐寒品种的选育提供参考依据。
Abstract:
-

参考文献/References:

[1]Zhou M Q,Chen H,Wei D H,et al. Arabidopsis CBF3 and DELLAs positively regulate each other in response to low temperature[J]. Scientific Reports,2017,7:39819.
[2]Hernández-Pérez T,del Rocío Gómez-García M,Valverde M E,et al. Capsicum annuum (hot pepper):an ancient Latin-American crop with outstanding bioactive compounds and nutraceutical potential.A review[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(6):2972-2993.
[3]Guo M,Yin Y X,Ji J J,et al. Cloning and expression analysis of heat-shock transcription factor gene CaHsfA2 from pepper (Capsicum annuum L.)[J]. Genetics and Molecular Research,2014,13(1):1865-1875.
[4]Gao C L,Mumtaz M A,Zhou Y,et al. Integrated transcriptomic and metabolomic analyses of cold-tolerant and cold-sensitive pepper species reveal key genes and essential metabolic pathways involved in response to cold stress[J]. International Journal of Molecular Sciences,2022,23(12):6683.
[5]Li J,Sohail H,Nawaz M A,et al. Physiological and proteomic analyses reveals that brassinosteroids application improves the chilling stress tolerance of pepper seedlings[J]. Plant Growth Regulation,2022,96(2):315-329.
[6]Sánchez-Bel P,Egea I,Sánchez-Ballesta M T,et al. Understanding the mechanisms of chilling injury in bell pepper fruits using the proteomic approach[J]. Journal of Proteomics,2012,75(17):5463-5478.
[7]Fu A Z,Zheng Y Y,Lv Y H,et al. Multi-omics analysis reveals specific modifications associated with reduced chilling injury in bell pepper fruit by methyl jamonate[J]. Postharvest Biology and Technology,2022,185:111799.
[8]Liu Z B,Song J S,Miao W,et al. Comprehensive proteome and lysine acetylome analysis reveals the widespread involvement of acetylation in cold resistance of pepper (Capsicum annuum L.)[J]. Frontiers in Plant Science,2021,12:730489.
[9]Xu D Y,Yuan S Z,Chen B,et al. A comparative proteomic and metabolomic analysis of the low-temperature response of a chilling-injury sensitive and a chilling-injury tolerant cultivar of green bell pepper[J]. Scientia Horticulturae,2023,318:112092.
[10]Shin S Y,Park M H,Choi J W,et al. Gene network underlying the response of harvested pepper to chilling stress[J]. Journal of Plant Physiology,2017,219:112-122.
[11]Li J,Yang P,Kang J G,et al. Transcriptome analysis of pepper (Capsicum annuum) revealed a role of 24-epibrassinolide in response to chilling[J]. Frontiers in Plant Science,2016,7:1281.
[12]Kong X M,Zhou Q,Luo F,et al. Transcriptome analysis of harvested bell peppers (Capsicum annuum L.) in response to cold stress[J]. Plant Physiology and Biochemistry,2019,139:314-324.
[13]Grimaldi-Olivas J C,Morales-Merida B E,Cruz-Mendívil A,et al. Transcriptomic analysis of bell pepper (Capsicum annuum L.) revealing key mechanisms in response to low temperature stress[J]. Molecular Biology Reports,2023,50(10):8431-8444.
[14]Miao W,Song J S,Huang Y W,et al. Comparative transcriptomics for pepper (Capsicum annuum L.) under cold stress and after rewarming[J]. Applied Sciences,2021,11(21):10204.
[15]Zhang J W,Liang L,Xie Y D,et al. Transcriptome and metabolome analyses reveal molecular responses of two pepper (Capsicum annuum L.) cultivars to cold stress[J]. Frontiers in Plant Science,2022,13:819630.
[16]Lee J G,Yi G,Seo J,et al. Jasmonic acid and ERF family genes are involved in chilling sensitivity and seed browning of pepper fruit after harvest[J]. Scientific Reports,2020,10(1):17949.
[17]Ritonga F N,Ngatia J N,Wang Y R,et al. AP2/ERF,an important cold stress-related transcription factor family in plants:a review[J]. Physiology and Molecular Biology of Plants,2021,27(9):1953-1968.
[18]高升华,李宁,王飞,等. 辣椒AP2/ERF家族转录因子CaERF109的克隆和表达分析[J]. 分子植物育种,2019,17(19):6256-6262.
[19]马潇. 辣椒CaCIPKs对干旱和低温胁迫的响应及其调控机理研究[D]. 杨凌:西北农林科技大学,2022:6-9.
[20]Yi S Y,Kim J H,Joung Y H,et al. The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis[J]. Plant Physiology,2004,136(1):2862-2874.
[21]Youm J W,Jeon J H,Choi D,et al. Ectopic expression of pepper CaPF1 in potato enhances multiple stresses tolerance and delays initiation of in vitro tuberization[J]. Planta,2008,228(4):701-708.
[22]Kim S,An C S,Hong Y N,et al. Cold-inducible transcription factor,CaCBF,is associated with a homeodomain leucine zipper protein in hot pepper (Capsicum annuum L.)[J]. Molecules and Cells,2004,18(3):300-308.
[23]魏小春,李艳,姚秋菊,等. 辣椒CaCBF1A基因的克隆及非生物胁迫下表达分析[J]. 河南农业科学,2016,45(12):110-115.
[24]Yang S,Tang X F,Ma N N,et al. Heterology expression of the sweet pepper CBF3 gene confers elevated tolerance to chilling stress in transgenic tobacco[J]. Journal of Plant Physiology,2011,168(15):1804-1812.
[25]叶正,高崇伦,Zakaria Gagoshidze,等. 中国辣椒低温响应转录因子CBF全基因组鉴定与分析[J]. 分子植物育种,2021,19(15):4903-4910.
[26]Dubos C,Stracke R,Grotewold E,et al. MYB transcription factors in Arabidopsis[J]. Trends in Plant Science,2010,15(10):573-581.
[27]居利香,雷欣,赵成志,等. 辣椒MYB基因家族的鉴定及与辣味关系分析[J]. 园艺学报,2020,47(5):875-892.
[28]Seong E S,Guo J,Wang M H. The chilli pepper (Capsicum annuum) MYB transcription factor (CaMYB) is induced by abiotic stresses[J]. Journal of Plant Biochemistry and Biotechnology,2008,17(2):193-196.
[29]Ma X,Yu Y N,Jia J H,et al. The pepper MYB transcription factor CaMYB306 accelerates fruit coloration and negatively regulates cold resistance[J]. Scientia Horticulturae,2022,295:110892.
[30]Ge W Y,Luo M L,Sun H J,et al. The CaMYB340 transcription factor induces chilling injury in post-harvest bell pepper by inhibiting fatty acid desaturation[J]. The Plant Journal,2022,111(3):800-818.
[31]Diao P F,Chen C,Zhang Y Z,et al. The role of NAC transcription factor in plant cold response[J]. Plant Signaling & Behavior,2020,15(9):1785668.
[32]Diao W P,Snyder J C,Wang S B,et al. Genome-wide analyses of the NAC transcription factor gene family in pepper (Capsicum annuum L.):chromosome location,phylogeny,structure,expression patterns,cis-elements in the promoter,and interaction network[J]. International Journal of Molecular Sciences,2018,19(4):1028.
[33]Hou X M,Zhang H F,Liu S Y,et al. The NAC transcription factor CaNAC064 is a regulator of cold stress tolerance in peppers[J]. Plant Science,2020,291:110346.
[34]Zhang H F,Ma F,Wang X K,et al. Molecular and functional characterization of CaNAC035,an NAC transcription factor from Pepper (Capsicum annuum L.)[J]. Frontiers in Plant Science,2020,11:14.
[35]Kong X M,Zhou Q,Zhou X,et al. Transcription factor CaNAC1 regulates low-temperature-induced phospholipid degradation in green bell pepper[J]. Journal of Experimental Botany,2020,71(3):1078-1091.
[36]Guo W L,Wang S B,Chen R G,et al. Characterization and expression profile of CaNAC2 pepper gene[J]. Frontiers in Plant Science,2015,6:755.
[37]Qian Y C,Zhang T Y,Yu Y,et al. Regulatory mechanisms of bHLH transcription factors in plant adaptive responses to various abiotic stresses[J]. Frontiers in Plant Science,2021,12:677611.
[38]Zhang Z S,Chen J,Liang C L,et al. Genome-wide identification and characterization of the bHLH transcription factor family in pepper (Capsicum annuum L.)[J]. Frontiers in Genetics,2020,11:570156.
[39]Wang Z Y,Zhang Y M,Hu H F,et al. CabHLH79 acts upstream of CaNAC035 to regulate cold stress in pepper[J]. International Journal of Molecular Sciences,2022,23(5):2537.
[40]Zhang H F,Guo J B,Chen X Q,et al. Transcription factor CabHLH035 promotes cold resistance and homeostasis of reactive oxygen species in pepper[J]. Horticultural Plant Journal,2024,10(3):823-836.
[41]Yang Y X,Guang Y L,Wang F,et al. Characterization of phytochrome-interacting factor genes in pepper and functional analysis of CaPIF8 in cold and salt stress[J]. Frontiers in Plant Science,2021,12:746517.
[42]Jing H,Li C,Ma F,et al. Genome-wide identification,expression diversication of dehydrin gene family and characterization of CaDHN3 in pepper (Capsicum annuum L.)[J]. PLoS One,2016,11(8):e0161073.
[43]Chen R G,Jing H,Guo W L,et al. Silencing of dehydrin CaDHN1 diminishes tolerance to multiple abiotic stresses in Capsicum annuum L[J]. Plant Cell Reports,2015,34(12):2189-2200.
[44]Zhang H F,Liu S Y,Ma J H,et al. CaDHN4,a salt and cold stress-responsive dehydrin gene from pepper decreases abscisic acid sensitivity in Arabidopsis[J]. International Journal of Molecular Sciences,2019,21(1):26.
[45]Yin Y X,Guo W L,Zhang Y L,et al. Cloning and characterisation of a pepper aquaporin,CaAQP,which reduces chilling stress in transgenic tobacco plants[J]. Plant Cell,Tissue and Organ Culture,2014,118(3):431-444.
[46]Zhang J W,Liang L,Xiao J C,et al. Genome-wide identification of polyamine oxidase (PAO) family genes:roles of CaPAO2 and CaPAO4 in the cold tolerance of pepper (Capsicum annuum L.)[J]. International Journal of Molecular Sciences,2022,23(17):9999.
[47]Wang H P,Liu Z C,Xie J M,et al. The CaALAD gene from pepper (Capsicum annuum L.) confers chilling stress tolerance in transgenic Arabidopsis plants[J]. Frontiers in Plant Science,2022,13:884990.
[48]Chen R G,Ma J H,Luo D,et al. CaMADS,a MADS-box transcription factor from pepper,plays an important role in the response to cold,salt,and osmotic stress[J]. Plant Science,2019,280:164-174.
[49]Venkatesh J,Kang M Y,Liu L,et al. F-box family genes,LTSF1 and LTSF2,regulate low-temperature stress tolerance in pepper (Capsicum chinense)[J]. Plants,2020,9(9):1186.
[50]Zhang R X,Zhu W C,Cheng G X,et al. A novel gene,CaATHB-12,negatively regulates fruit carotenoid content under cold stress in Capsicum annuum[J]. Food & Nutrition Research,2020,64:64.
[51]Ma X,Gai W X,Li Y,et al. The CBL-interacting protein kinase CaCIPK13 positively regulates defence mechanisms against cold stress in pepper[J]. Journal of Experimental Botany,2022,73(5):1655-1667.
[52]Zhang J W,Xie M H,Yu G F,et al. CaSPDS,a spermidine synthase gene from pepper (Capsicum annuum L.),plays an important role in response to cold stress[J]. International Journal of Molecular Sciences,2023,24(5):5013.
[53]Gou B D,Duan P P,Wei M,et al. Silencing CaTPS1 increases the sensitivity to low temperature and salt stresses in pepper[J]. Agronomy,2023,13(2):319.
[54]刘慧琴,李朝森,郭勤卫,等. 鲜辣型辣椒新品种衢椒3号的选育[J]. 浙江农业科学,2022,63(9):2021-2023,2041.
[55]王雪,陈立新,刘录祥,等. 利用空间诱变技术选育辣椒新品种“宇椒7号”[J]. 北方园艺,2017(11):162-165.
[56]王兴娥,巩振辉,李大伟,等. 冷诱导基因C-重复基序结合因子4(CBF4)在辣椒中的遗传转化及抗寒性分析[J]. 农业生物技术学报,2009,17(5):830-835.
[57]Anwar A,Bai L Q,Miao L,et al. 24-epibrassinolide ameliorates endogenous hormone levels to enhance low-temperature stress tolerance in cucumber seedlings[J]. International Journal of Molecular Sciences,2018,19(9):2497.
[58]Guo W L,Chen R G,Gong Z H,et al. Exogenous abscisic acid increases antioxidant enzymes and related gene expression in pepper (Capsicum annuum) leaves subjected to chilling stress[J]. Genetics and Molecular Research,2012,11(4):4063-4080.
[59]Li J,Yang P,Gan Y T,et al. Brassinosteroid alleviates chilling-induced oxidative stress in pepper by enhancing antioxidation systems and maintenance of photosystem Ⅱ[J]. Acta Physiologiae Plantarum,2015,37(11):222.
[60]Ge W Y,Zhao Y B,Kong X M,et al. Combining salicylic acid and trisodium phosphate alleviates chilling injury in bell pepper (Capsicum annuum L.) through enhancing fatty-acid desaturation efficiency and water retention[J]. Food Chemistry,2020,327:127057.
[61]Ma M J,Zhu Z Q,Cheng S C,et al. Methyl jasmonate alleviates chilling injury by regulating membrane lipid composition in green bell pepper[J]. Scientia Horticulturae,2020,266:109308.
[62]唐超男. 外源独脚金内酯调控辣椒幼苗低温耐受性的生理与分子机制[D]. 兰州:甘肃农业大学,2021:33-69.
[63]Wang Q,Ding T,Zuo J H,et al. Amelioration of postharvest chilling injury in sweet pepper by Glycine betaine[J]. Postharvest Biology and Technology,2016,112:114-120.
[64]Li J,Xie J M,Yu J H,et al. Melatonin enhanced low-temperature combined with low-light tolerance of pepper (Capsicum annuum L.) seedlings by regulating root growth,antioxidant defense system,and osmotic adjustment[J]. Frontiers in Plant Science,2022,13:998293.
[65]Ding D X,Li J,Xie J M,et al. Exogenous zeaxanthin alleviates low temperature combined with low light induced photosynthesis inhibition and oxidative stress in pepper (Capsicum annuum L.) plants[J]. Current Issues in Molecular Biology,2022,44(6):2453-2471.
[66]Tang C N,Xie J M,Lv J,et al. Alleviating damage of photosystem and oxidative stress from chilling stress with exogenous zeaxanthin in pepper (Capsicum annuum L.) seedlings[J]. Plant Physiology and Biochemistry,2021,162:395-409.
[67]Yao M M,Ge W Y,Zhou Q,et al. Exogenous glutathione alleviates chilling injury in postharvest bell pepper by modulating the ascorbate-glutathione (AsA-GSH) cycle[J]. Food Chemistry,2021,352:129458.
[68]Endo H,Miyazaki K,Ose K,et al. Hot water treatment to alleviate chilling injury and enhance ascorbate-glutathione cycle in sweet pepper fruit during postharvest cold storage[J]. Scientia Horticulturae,2019,257:108715.
[69]Liu L,Wei Y N,Shi F,et al. Intermittent warming improves postharvest quality of bell peppers and reduces chilling injury[J]. Postharvest Biology and Technology,2015,101:18-25.
[70]González-Aguilar G A,Gayosso L,Cruz R,et al. Polyamines induced by hot water treatments reduce chilling injury and decay in pepper fruit[J]. Postharvest Biology and Technology,2000,18(1):19-26.
[71]张建,许锦鹏,蒋细旺. 养殖废弃物生物有机肥对辣椒抗寒性的影响[J]. 长江蔬菜,2015(6):48-53.
[72]高成萌,高王宇,朱军,等. 马尾藻有机肥发酵工艺优化及其对辣椒抗寒性的影响[J]. 广东农业科学,2023,50(11):89-97.
[73]王瑞东. 低温驯化对辣椒幼苗生长生理的影响[D]. 兰州:甘肃农业大学,2016:15-19.
[74]Mi S,Li T,Shi Q Y,et al. Cold shock precooling improves the firmness of chili pepper during postharvest storage and the molecular mechanisms related to pectin[J]. Food Chemistry,2023,419:136052.
[75]Mi S,Li T,Sang Y X,et al. Effect of cold shock precooling on the physicochemical,physiological properties and volatile profiles of chili peppers during postharvest storage[J]. LWT-Food Science and Technology,2023,187:115300.
[76]Wang Y X,Gao L P,Wang Q,et al. Low temperature conditioning combined with methyl jasmonate can reduce chilling injury in bell pepper[J]. Scientia Horticulturae,2019,243:434-439.
[77]Wang F,Yang Q Z,Zhao Q F,et al. Cold shock treatment with oxalic acid could alleviate chilling injury in green bell pepper by enhancing antioxidant enzyme activity and regulating proline metabolism[J]. Scientia Horticulturae,2022,295:110783.

相似文献/References:

[1]王红亮,陈丽丽.低温胁迫对9种绿化树木相对电导率的影响[J].江苏农业科学,2013,41(04):167.
[2]沙向红,严建萍.低温胁迫对幼苗期棉花根系ADHa与BADH表达的影响[J].江苏农业科学,2013,41(08):37.
 Sha Xianghong,et al.Effect of low temperature stress on expression of ADHa and BADH gene in root of cotton seedlings[J].Jiangsu Agricultural Sciences,2013,41(4):37.
[3]张志,徐洪国,王世发,等.低温胁迫对黄瓜幼苗生理指标的影响[J].江苏农业科学,2013,41(05):126.
 Zhang Zhi,et al.Effect of low temperature stress on physiological indicators of cucumber seedings[J].Jiangsu Agricultural Sciences,2013,41(4):126.
[4]戴红燕,华劲松,张荣萍,等.低温胁迫对高原粳稻幼苗生长的影响[J].江苏农业科学,2014,42(11):85.
 Dai Hongyan,et al(8).Effect of low temperature stress on seedling growth of plateau japonica rice[J].Jiangsu Agricultural Sciences,2014,42(4):85.
[5]任旭琴,彭莉,章宇萍,等.邻苯二甲酸二丁酯对辣椒根系生理特性和土壤酶活性的影响[J].江苏农业科学,2015,43(12):191.
 Ren Xuqin,et al.Effects of dibutyl phthalate (DBP) on root physiological characteristics and soil enzyme activity of pepper[J].Jiangsu Agricultural Sciences,2015,43(4):191.
[6]李孝凯,沙伟,国春晖,等.低温胁迫对毛尖紫萼藓、东亚砂藓生理生化及光合特性的影响[J].江苏农业科学,2014,42(10):355.
 Li Xiaokai,et al.Effects of low temperature stress on physiological,biochemical and photosynthetic characteristics of Grimmia pilifera and Racomitrium japonicum[J].Jiangsu Agricultural Sciences,2014,42(4):355.
[7]祁建波,张永吉,张永泰,等.耐低温弱光辣椒新品种扬椒5号的选育[J].江苏农业科学,2014,42(10):153.
 Qi Jianbo,et al.Breeding of new pepper cultivar“Yangjiao No.5”with tolerance to low-temperature and low light-intensity[J].Jiangsu Agricultural Sciences,2014,42(4):153.
[8]侯丽霞.CaCl2浸种对低温胁迫下水稻幼苗生理指标的影响[J].江苏农业科学,2013,41(08):70.
 Hou Lixia,et al.Effect of soaking seeds with CaCl2 on physiological indicators of rice seedlings[J].Jiangsu Agricultural Sciences,2013,41(4):70.
[9]刘金兵,王述彬,潘宝贵,等.辣椒新品种苏椒20号的选育与栽培技术[J].江苏农业科学,2013,41(11):110.
 Liu Jinbing,et al.Breeding and cultivation techniques of new hot pepper cultivar “Sujiao No.20”[J].Jiangsu Agricultural Sciences,2013,41(4):110.
[10]陈素娟,陈国元,马运涛.醋糟混合基质在辣椒育苗中的应用[J].江苏农业科学,2013,41(11):178.
 Chen Sujuan,et al.Application of vinegar residue mixed matrix in cultivation of pepper seedlings[J].Jiangsu Agricultural Sciences,2013,41(4):178.
[11]丁梦佳,潘宝贵,王述彬,等.辣椒苗期与成株期耐冷性的鉴定评价[J].江苏农业科学,2019,47(02):118.
 Ding Mengjia,et al.Identification and evaluation of cold tolerance of pepper at seedling stage and adult stage[J].Jiangsu Agricultural Sciences,2019,47(4):118.
[12]李鹏,谭旋,唐格斯,等.石墨烯远红外电暖在辣椒育苗上的应用效果[J].江苏农业科学,2022,50(11):149.
 Li Peng,et al.Effect of graphene far-infrared electric heating on pepper seedling raising[J].Jiangsu Agricultural Sciences,2022,50(4):149.
[13]罗太敏,王凯贤,叶欣悦,等.硒酵母浸种对低温胁迫下辣椒种子萌发、幼苗生理特性的影响[J].江苏农业科学,2023,51(10):137.
 Luo Taimin,et al.Effects of seed soaking with selenium yeast on seed germination and seedling physiological characteristics of capsicum under low temperature stress[J].Jiangsu Agricultural Sciences,2023,51(4):137.

备注/Memo

备注/Memo:
收稿日期:2024-03-22
基金项目:河南省科技攻关项目(编号:232102110260)。
作者简介:张蓓(1994—),女,河南郑州人,硕士,研究实习员,主要从事蔬菜种质资源与遗传育种研究。E-mail:1141209419@qq.com。
通信作者:任福森,研究员,主要从事蔬菜育种研究。E-mail:renfusen@126.com。
更新日期/Last Update: 2025-02-20