[1]刘文静,范永胜,董彦琪,等. 我国棉叶生产现状分析及建议[J]. 中国种业,2022(1):21-25.
[2]刘嘉嘉,黄福江.新疆棉花生产现状和存在问题及对策[J]. 棉花科学,2022,44(5):15-19.
[3]唐睿,孙宪银,卓富彦,等. 近5年中国棉花主要病虫害发生演替及防控分析[J]. 新疆农业科学,2021,58(12):2208-2219.
[4]曾娟,陆宴辉,刘明,等. 棉花病虫草害调查诊断与决策支持系统开发与实现[J]. 中国植保导刊,2017,37(5):30-36.
[5]许德刚,王露,李凡. 深度学习的典型目标检测算法研究综述[J]. 计算机工程与应用,2021,57(8):10-25.
[6]马琳琳,马建新,韩佳芳,等. 基于YOLO v5s目标检测算法的研究[J]. 电脑知识与技术,2021,17(23):100-103.
[7]周绍发,肖小玲,刘忠意,等. 改进的基于YOLOv5s苹果树叶病害检测[J]. 江苏农业科学,2023,51(13):212-220.
[8]董文轩,梁宏涛,刘国柱,等. 深度卷积应用于目标检测算法综述[J]. 计算机科学与探索,2022,16(5):1025-1042.
[9]李滨,樊健. 基于YOLO v5的水稻害虫分类[J]. 江苏农业科学,2024,52(2):175-182.
[10]王小铸,于莲芝. 基于卷积与自注意力聚合的小目标检测[J]. 电子科技,2024,37(2):14-22.
[11]Wang A,Chen H,Lin Z J,et al. RepViT:revisiting mobile CNN from ViT perspective[EB/OL]. (2023-07-18)[2024-01-02]. https://arxiv.org/abs/2307.09283v8.
[12]董恒祥,潘江如,董芙楠,等. 基于YOLO v5s模型的边界框回归损失函数研究[J]. 现代电子技术,2024,47(3):179-186.
[13]Ma S L,Xu Y,Ma S L,et al. MPDIoU:a loss for efficient and accurate bounding box regression[EB/OL]. (2023-07-14)[2024-01-02]. https://arxiv.org/abs/2307.07662v1.
[14]花成才,磨少清,陈怡霖,等. 基于红外图像的目标检测算法分析[J]. 汽车实用技术,2024,49(2):59-66.
[15]Wang Q L,Wu B G,Zhu P F,et al. ECA-net:efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattleg:IEEE,2020:11531-11539.
[16]杨光乔,李颖,王国程,等. 基于ECA改进1D-CNN的柱塞泵故障诊断[J]. 石油机械,2023,51(11):34-40,162.
[1]罗巍,陈曙东,王福涛,等.基于深度学习的大型食草动物种群监测方法[J].江苏农业科学,2020,48(20):247.
Luo Wei,et al.Monitoring method of large herbivore population based on deep learning[J].Jiangsu Agricultural Sciences,2020,48(5):247.
[2]陈恩会,褚姝频,王炜,等.基于RetinaNet模型的梨小食心虫智能识别计数方法[J].江苏农业科学,2021,49(24):205.
Chen Enhui,et al.Intelligent recognition and counting method of Grapholitha molesta based on RetinaNet model[J].Jiangsu Agricultural Sciences,2021,49(5):205.
[3]陶雪阳,施振旦,郭彬彬,等.基于RFID与目标检测的种鹅个体产蛋信息监测方法[J].江苏农业科学,2023,51(5):200.
Tao Xueyang,et al.Monitoring method of individual egg-laying information of breeding geese based on RFID and object detection[J].Jiangsu Agricultural Sciences,2023,51(5):200.
[4]严陈慧子,田芳明,谭峰,等.基于改进YOLOv4的水稻病害快速检测方法[J].江苏农业科学,2023,51(6):187.
Yanchen Huizi,et al.Rapid detection method of rice diseases based on improved YOLOv4[J].Jiangsu Agricultural Sciences,2023,51(5):187.
[5]周绍发,肖小玲,刘忠意,等.改进的基于YOLOv5s苹果树叶病害检测[J].江苏农业科学,2023,51(13):212.
Zhou Shaofa,et al.Improved apple leaf disease detection based on YOLOv5s[J].Jiangsu Agricultural Sciences,2023,51(5):212.
[6]姜国权,杨正元,霍占强,等.基于改进YOLOv5网络的疏果前苹果检测方法[J].江苏农业科学,2023,51(14):205.
Jiang Guoquan,et al.Apple detection method before thinning fruit based on improved YOLOv5 model[J].Jiangsu Agricultural Sciences,2023,51(5):205.
[7]王圆圆,林建,王姗.基于YOLOv4-tiny模型的水稻早期病害识别方法[J].江苏农业科学,2023,51(16):147.
Wang Yuanyuan,et al.An early rice disease recognition method based on YOLOv4-tiny model[J].Jiangsu Agricultural Sciences,2023,51(5):147.
[8]倪智涛,胡伟健,李宝山,等.一种基于图像分类与目标检测协同的番茄细粒度病害识别方法[J].江苏农业科学,2023,51(22):221.
Ni Zhitao,et al.A novel method for tomato fine-grained disease recognition based on image classification and target detection[J].Jiangsu Agricultural Sciences,2023,51(5):221.
[9]施杰,林双双,罗建刚,等.基于YOLO v5s改进模型的玉米作物病虫害检测方法[J].江苏农业科学,2023,51(24):175.
Shi Jie,et al.Study on a detection method for crop diseases and insect pests based on YOLO v5s improved model[J].Jiangsu Agricultural Sciences,2023,51(5):175.
[10]郑旭康,李志忠,秦俊豪.基于半监督学习的梨叶病害检测[J].江苏农业科学,2024,52(5):192.
Zheng Xukang,et al.Study on pear leaf disease detection based on semi-supervised learning[J].Jiangsu Agricultural Sciences,2024,52(5):192.