[1]李伟嘉,苏昕. 数字乡村背景下智慧农业的场景、效应与路径 [J]. 科学管理研究,2023,41(3):140-150.
[2]Peladarinos N,Piromalis D,Cheimaras V,et al. Enhancing smart agriculture by implementing digital twins:a comprehensive review[J]. Sensors,2023,23(16):7128.
[3]Grieves M. Digital twin:manufacturing excellence through virtual factory replication[J]. White Paper,2014,1:1-7.
[4]陶飞,刘蔚然,张萌,等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统,2019,25(1):105-195.
[5]Yang W Q,Zheng Y,Li S Y. Application status and prospect of digital twin for on-orbit spacecraft[J]. IEEE Access,2021,9:106489-106500.
[6]Maheshwari P,Kamble S,Belhadi A,et al. Digital twin implementation for performance improvement in process industries:a case study of food processing company[J]. International Journal of Production Research,2023,61(23):8343-8365.
[7]陈才,张育雄,张竞涛,等. 数字孪生城市的驱动力、功能框架与建设路径[J]. 上海城市规划,2023(5):11-17.
[8]肖青,黄华国,卞尊健,等. 关于遥感实验场数字孪生体构建的思考[J]. 遥感学报,2023,27(3):584-598.
[9]Tao F,Zhang H,Liu A,et al. Digital twin in industry:state-of-the-art[J]. IEEE Transactions on Industrial Informatics,2019,15(4):2405-2415.
[10]刘昌军,吕娟,任明磊,等. 数字孪生淮河流域智慧防洪体系研究与实践[J]. 中国防汛抗旱,2022,32(1):47-53.
[11]Slob N,Hurst W. Digital twins and industry 4.0 technologies for agricultural greenhouses[J]. Smart Cities,2022,5(3):1179-1192.
[12]Tzachor A,Richards C E,Jeen S. Transforming agrifood production systems and supply chains with digital twins[J]. NPJ Science of Food,2022,6(1):47.
[13]Skobelev P O,Mayorov I V,Simonova E V,et al. Development of models and methods for creating a digital twin of plant within the cyber-physical system for precision farming management[J]. Journal of Physics,2020,1703(1):012022.
[14]Kampker A,Stich V,Jussen P,et al. Business models for industrial smart services–the example of a digital twin for a product-service-system for potato harvesting[J]. Procedia CIRP,2019,83:534-540.
[15]苗腾,郭新宇,温维亮,等. 基于图像的作物病害状态表观三维模拟方法[J]. 农业工程学报,2016,32(7):181-186.
[16]李炜,朱德利,王青,等. 监测生长状态和环境响应的作物数字孪生系统研究综述[J]. 中国农业科技导报,2022,24(6):90-105.
[17]匡红云,郝皓,游世胜,等. 数字孪生赋能预制菜冷链发展的研究进展 [J]. 现代食品科技,2023,12(5):1-9.
[18]李稙,蔡东娜. 数字花卉植物的全息可视化与交互实现[J]. 图学学报,2019,40(6):1017-1023.
[19]郭大方,杜岳峰,武秀恒,等. 农机装备数字孪生:从概念到应用 [J]. 智慧农业(中英文),2023,5(2):149-160.
[20]党建友,裴雪霞,张定一,等. 微喷灌水氮一体化对冬小麦生长发育和水肥利用效率的影响[J]. 应用生态学报,2020,31(11):3700-3710.
[21]程艳莉,张芬,刘发波,等. 滴灌施肥对不同类型蔬菜和果树产量、水氮利用效率和品质的影响[J]. 植物营养与肥料学报,2023,29(9):1677-1688.
[22]Li Y,Huang G H,Chen Z J,et al. Effects of irrigation and fertilization on grain yield,water and nitrogen dynamics and their use efficiency of spring wheat farmland in an arid agricultural watershed of Northwest China[J]. Agricultural Water Management,2022,260:107277.
[23]周丽,王长柱,李新岗. 新疆现代红枣栽培模式研究[J]. 西北林学院学报,2015,30(2):139-143.
[24]段晨阳,冯建中,全斌,等. 利用深度学习进行GF-6影像枣园检测识别[J]. 测绘通报,2022(3):54-59.
[25]王德娟,汪健平,冯建中,等. 基于DNDC模型的红枣生长模拟参数敏感性和产量不确定性分析 [J]. 新疆农业科学,2023,60(3):651-663.
[26]艾鹏睿,马英杰,马亮. 干旱区滴灌枣棉间作模式下枣树棵间蒸发的变化规律[J]. 生态学报,2018,38(13):4761-4769.
[27]胡家帅,王振华,郑旭荣,等. 滴灌方式对南疆沙区成龄红枣土壤水分的影响 [J]. 灌溉排水学报,2019,38(4):43-47.
[28]戴秀,王坚强,任妮,等. 智能水肥一体化管控平台的设计与实现[J]. 江苏农业科学,2021,49(18):177-181.
[29]Han C J,Rui F C. Research on applied technology with PID control theory and design methods[J]. Advanced Materials Research,2014,886:369-373.
[30]张洋,马英杰. 不同生育期成龄灰枣树茎流速率与气象因子的关系[J]. 新疆农业科学,2021,58(9):1712-1722.
[31]Zhou Z H,Feng J. Deep forest[J]. National Science Review,2019,6(1):74-86.
[32]Alfaro V M,Vilanova R. Control of high-order processes:near-optimal robust tuning of PID regulators for repeated-pole plus dead-time models[J]. International Journal of Control,2024,97(1):72-85.
[33]Perthame L,Colbach N,Brunel-Muguet S,et al. Quantifying the nitrogen demand of individual plants in heterogeneous canopies:a case study with crop and weed species[J]. European Journal of Agronomy,2020,119:126102.
[34]蔡梅,黄兴召,温正宇,等. 不同树种树干茎流氮和可溶性有机碳动态变化及其影响因子[J]. 中南林业科技大学学报,2021,41(8):116-124.
[35]Mabrouk A I,Gordon D A,Gotsch S G,et al. Conceptual analysis:what signals might plant canopies send via stemflow?[J]. Frontiers in Water,2022,4:1075732.
[36]张洋,马英杰. 西北干旱区盛果期灰枣休眠期液流研究[J]. 果树学报,2021,38(6):934-946.
[37]程平,李长城,李宏,等. 漫灌条件下盛果期灰枣各生育期茎流变化[J]. 西南农业学报,2017,30(10):2315-2321.
[38]刘朋飞,郭浩,辛智鸣. 乌兰布和沙漠沙枣树干液流与环境因子关系[J]. 干旱区资源与环境,2021,35(9):177-184.
[39]吴新华,苗铮,郝元朔,等. 基于beta回归的迎春5号杨树树干密度混合效应模型[J]. 北京林业大学学报,2023,45(5):67-78.
[40]Xu D,Zhang Z X,Nie T Z,et al. Simulation study of CH4 and N2O emission fluxes from rice fields in Northeast China under different straw-returning and irrigation methods based on the DNDC model[J]. Water,2023,15(14):2633.
[41]Singh G,Vashisht B B,Sharma S. Customization of DNDC model:simulation of yield and nitrogen balance in rice (Oryza sativa L.) in relation to climate change,soil and management interventions[J]. Journal of the Indian Society of Soil Science,2018,66(3):275.
[42]张梓浩,郭飞,吴坤泽,等. 深度森林DF21模型在土壤镉含量高光谱反演中的性能评价[J]. 光谱学与光谱分析,2023,43(8):2638-2643.
[43]陈龙,张峰,蒋升. 小样本条件下基于深度森林学习模型的典型军事目标识别方法[J]. 中国电子科学研究院学报,2019,14(3):232-237.
[44]邬焜. 斯宾诺莎的神即自然实体的多面孔杂糅的哲学[J]. 系统科学学报,2019,27(2):1-7.
[45]刘永安. 人工技术实体伦理话语权的结构视角[J]. 自然辩证法研究,2021,37(5):29-35.
[46]顾力文,阮艳雯,刘晓刚. 基于人体特征曲线和开源软件二次开发的服装3D建模方法[J]. 东华大学学报(自然科学版),2019,45(2):275-284.
[47]廖伟智,张彬,徐国栋,等. 基于数字孪生的粮库可视化监控与管理系统研发[J]. 制造业自动化,2023,45(11):202-207.
[48]Zhu X R,Zhao L Y,Cao J M,et al. Fault diagnosis of 5G networks based on digital twin model[J]. China Communications,2023,20(7):175-191.
[49]曹小华,李泊桓,徐上尉. 基于MQTT协议的物联网岸电监控系统[J]. 计算机应用与软件,2023,40(3):11-16,27.
[50]康献民,陈尧,王建生,等. 机械装备的数字孪生结构参数分析与评价方法研究[J]. 机床与液压,2022,50(19):14-19.
[51]林梓君,刘婉玲,陈一民,等. 秸秆添加下土壤氮矿化对冻融交替响应的研究进展[J]. 中国农学通报,2023,39(36):75-82.
[52]陶飞,张辰源,戚庆林,等. 数字孪生成熟度模型[J]. 计算机集成制造系统,2022,28(5):1267-1281.
[53]Lima F A,Córcoles J I,Tarjuelo J M,et al. Model for management of an on-demand irrigation network based on irrigation scheduling of crops to minimize energy use (Part Ⅱ):financial impact of regulated deficit irrigation[J]. Agricultural Water Management,2019,215:44-54.
[54]Song C X,Oxley L,Ma H Y. What determines irrigation efficiency when farmers face extreme weather events?A field survey of the major wheat producing regions in China[J]. Journal of Integrative Agriculture,2018,17(8):1888-1899.
[55]郭二辉,胡聃,田朝阳,等. 土壤氮素与水分对植物光合生理生态的影响研究[J]. 安徽农业科学,2008,36(26):11211-11213.
[56]Abumadi F A,Semeraro C,Olabi A G,et al. Key research challenges in digital twin applications for demanufacturing[J]. IFAC-PapersOnLine,2022,55(10):2551-2556.
[57]Zheng X J,Shi Z Y,Wang Y R,et al. Digital twin modeling for district heating network based on hydraulic resistance identification and heat load prediction[J]. Energy,2024,288:129726.
[58]王高弟,白皓然,宋晨勇,等. 基于物联网的水肥精准管控系统设计[J]. 农机化研究,2020,42(8):207-211,217.
[59]靳正忠,王永东,雷加强,等. 塔里木沙漠公路防护林土壤环境因子的根际效应[J]. 中国沙漠,2018,38(4):808-814.
[60]王保莉,岑剑,武传东,等. 过量施肥下氮素形态对旱地土壤细菌多样性的影响[J]. 农业环境科学学报,2011,30(7):1351-1356.
[61]Cesco S,Sambo P,Borin M,et al. Smart agriculture and digital twins:applications and challenges in a vision of sustainability[J]. European Journal of Agronomy,2023,146:126809.
[1]谢铮辉,罗微,张慧坚,等.基于GPRS的作物生长环境监测系统设计[J].江苏农业科学,2014,42(11):443.
Xie Zhenghui,et al().Design of crop growth environment monitoring system based on GPRS[J].Jiangsu Agricultural Sciences,2014,42(5):443.
[2]王克甫,蒋威.基于CC430的设施农业环境信息监测系统[J].江苏农业科学,2014,42(07):414.
Wang Kefu,et al.Facility agriculture environment information monitoring system based on CC430[J].Jiangsu Agricultural Sciences,2014,42(5):414.
[3]高敬尧,王宏燕,许毛毛,等.生物炭施入对农田土壤及作物生长影响的研究进展[J].江苏农业科学,2016,44(10):10.
Gao Jingyao,et al.Research progress of effect of biochar on agricultural soil and crop growth:a review[J].Jiangsu Agricultural Sciences,2016,44(5):10.
[4]葛道阔,曹宏鑫,杨余旺,等.基于作物生长模型的小麦区域化旱涝监测预警[J].江苏农业科学,2017,45(22):299.
Ge Daokuo,et al.Monitoring and early warning of regional drought and waterlogged for wheat based on crop growth model[J].Jiangsu Agricultural Sciences,2017,45(5):299.
[5]周星,徐年龙,周娜娜,等.减氮条件下施用蚓粪对土壤性质及小麦生长的影响[J].江苏农业科学,2021,49(15):83.
Zhou Xing,et al.Effects of vermicompost application on soil properties and wheat growth under reduced nitrogen[J].Jiangsu Agricultural Sciences,2021,49(5):83.
[6]张婧,陈庆锋,刘伟,等.秸秆还田对盐碱地土壤及作物生长的影响研究进展[J].江苏农业科学,2022,50(11):13.
Zhang Jing,et al.Research progress on effects of straw returning on saline-alkali soil quality and crop growth[J].Jiangsu Agricultural Sciences,2022,50(5):13.
[7]史大炜,伍纲,杨其长,等.石墨烯材料在农业领域的应用研究进展[J].江苏农业科学,2023,51(7):39.
Shi Dawei,et al.Research progress on application of graphene materials in agriculture[J].Jiangsu Agricultural Sciences,2023,51(5):39.
[8]顾汉柱,王琛,张瑛,等.水稻茎秆抗倒伏评价及其生理机制研究进展[J].江苏农业科学,2023,51(21):1.
Gu Hanzhu,et al.Research progress on lodging resistance evaluation of rice stem and its physiological mechanism[J].Jiangsu Agricultural Sciences,2023,51(5):1.