|本期目录/Table of Contents|

[1]邹军,冯建中,王剑,等.面向水氮管理的数字孪生枣树作物模型系统设计与仿真[J].江苏农业科学,2025,53(5):290-300.
 Zou Jun,et al.Design and simulation of digital twin jujube crop model system for water and nitrogen management[J].Jiangsu Agricultural Sciences,2025,53(5):290-300.
点击复制

面向水氮管理的数字孪生枣树作物模型系统设计与仿真(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第53卷
期数:
2025年第5期
页码:
290-300
栏目:
作物模型
出版日期:
2025-03-05

文章信息/Info

Title:
Design and simulation of digital twin jujube crop model system for water and nitrogen management
作者:
邹军1冯建中1王剑1白林燕2谢能付1陶鑫1薛原1
1.中国农业科学院农业信息研究所,北京100081; 2.中国科学院空天信息创新研究院,北京100094
Author(s):
Zou Junet al
关键词:
作物生长水氮管理数字孪生作物模型系统仿真枣树
Keywords:
-
分类号:
S126;TP391.9
DOI:
-
文献标志码:
A
摘要:
为有效改善灌溉模式、节约水氮肥资源、降低或减弱不合理的水氮灌溉施用对环境的负面影响,针对我国西北干旱绿洲滴灌区的集约规模化红枣种植区,面向枣园水氮精细化管理的需要和作物生长与水氮灌溉施肥控制过程,运用数字孪生技术,开展田间水氮一体化按需灌溉施氮作业高效协同管控模式、数字孪生枣树作物生长模型系统关键技术及其应用研究,构建面向枣园水氮管理的数字孪生枣树作物模型系统框架体系和枣树生长数字孪生体模型,并利用改进优化的水氮需求模型、融合枣树DNDC模型的深度森林(gcForest)土壤水氮增强预测模型及基于响应式的PID(比例、积分和微分)控制模式,构建田间枣树生长水氮有效的调控方式。研发了具有包括实时监测、作物生长模拟、水氮控制与仿真等功能的枣树生长水氮管理数字孪生原型系统平台,并对孪生系统进行有效性验证和仿真示例及应用性分析与评价。结果表明,枣树生长数字孪生系统模拟的日均茎流速与实测值具有显著的一致性(rRMSE=028,R2=0.80),能够较好地模拟土壤湿度(rRMSE=0.10,R2=0.92)、土壤含氮量(rRMSE=0.21,R2=0.95)的变化情况,孪生系统模拟综合精准度为80.33%。在满足枣树生长过程中对水氮需求的同时,高频次按需响应式灌溉施氮方案可节约19.21%用水量、23.95%用氮量。在开放式枣园生产环境中,该系统初步具备仿真模拟关键生育期田间枣树生长物理空间单元的水氮含量及其复杂变化的能力,可为枣树栽培过程中田间水氮的智慧精细化管理提供有效的决策性支持。
Abstract:
-

参考文献/References:

[1]李伟嘉,苏昕. 数字乡村背景下智慧农业的场景、效应与路径 [J]. 科学管理研究,2023,41(3):140-150.
[2]Peladarinos N,Piromalis D,Cheimaras V,et al. Enhancing smart agriculture by implementing digital twins:a comprehensive review[J]. Sensors,2023,23(16):7128.
[3]Grieves M. Digital twin:manufacturing excellence through virtual factory replication[J]. White Paper,2014,1:1-7.
[4]陶飞,刘蔚然,张萌,等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统,2019,25(1):105-195.
[5]Yang W Q,Zheng Y,Li S Y. Application status and prospect of digital twin for on-orbit spacecraft[J]. IEEE Access,2021,9:106489-106500.
[6]Maheshwari P,Kamble S,Belhadi A,et al. Digital twin implementation for performance improvement in process industries:a case study of food processing company[J]. International Journal of Production Research,2023,61(23):8343-8365.
[7]陈才,张育雄,张竞涛,等. 数字孪生城市的驱动力、功能框架与建设路径[J]. 上海城市规划,2023(5):11-17.
[8]肖青,黄华国,卞尊健,等. 关于遥感实验场数字孪生体构建的思考[J]. 遥感学报,2023,27(3):584-598.
[9]Tao F,Zhang H,Liu A,et al. Digital twin in industry:state-of-the-art[J]. IEEE Transactions on Industrial Informatics,2019,15(4):2405-2415.
[10]刘昌军,吕娟,任明磊,等. 数字孪生淮河流域智慧防洪体系研究与实践[J]. 中国防汛抗旱,2022,32(1):47-53.
[11]Slob N,Hurst W. Digital twins and industry 4.0 technologies for agricultural greenhouses[J]. Smart Cities,2022,5(3):1179-1192.
[12]Tzachor A,Richards C E,Jeen S. Transforming agrifood production systems and supply chains with digital twins[J]. NPJ Science of Food,2022,6(1):47.
[13]Skobelev P O,Mayorov I V,Simonova E V,et al. Development of models and methods for creating a digital twin of plant within the cyber-physical system for precision farming management[J]. Journal of Physics,2020,1703(1):012022.
[14]Kampker A,Stich V,Jussen P,et al. Business models for industrial smart services–the example of a digital twin for a product-service-system for potato harvesting[J]. Procedia CIRP,2019,83:534-540.
[15]苗腾,郭新宇,温维亮,等. 基于图像的作物病害状态表观三维模拟方法[J]. 农业工程学报,2016,32(7):181-186.
[16]李炜,朱德利,王青,等. 监测生长状态和环境响应的作物数字孪生系统研究综述[J]. 中国农业科技导报,2022,24(6):90-105.
[17]匡红云,郝皓,游世胜,等. 数字孪生赋能预制菜冷链发展的研究进展 [J]. 现代食品科技,2023,12(5):1-9.
[18]李稙,蔡东娜. 数字花卉植物的全息可视化与交互实现[J]. 图学学报,2019,40(6):1017-1023.
[19]郭大方,杜岳峰,武秀恒,等. 农机装备数字孪生:从概念到应用 [J]. 智慧农业(中英文),2023,5(2):149-160.
[20]党建友,裴雪霞,张定一,等. 微喷灌水氮一体化对冬小麦生长发育和水肥利用效率的影响[J]. 应用生态学报,2020,31(11):3700-3710.
[21]程艳莉,张芬,刘发波,等. 滴灌施肥对不同类型蔬菜和果树产量、水氮利用效率和品质的影响[J]. 植物营养与肥料学报,2023,29(9):1677-1688.
[22]Li Y,Huang G H,Chen Z J,et al. Effects of irrigation and fertilization on grain yield,water and nitrogen dynamics and their use efficiency of spring wheat farmland in an arid agricultural watershed of Northwest China[J]. Agricultural Water Management,2022,260:107277.
[23]周丽,王长柱,李新岗. 新疆现代红枣栽培模式研究[J]. 西北林学院学报,2015,30(2):139-143.
[24]段晨阳,冯建中,全斌,等. 利用深度学习进行GF-6影像枣园检测识别[J]. 测绘通报,2022(3):54-59.
[25]王德娟,汪健平,冯建中,等. 基于DNDC模型的红枣生长模拟参数敏感性和产量不确定性分析 [J]. 新疆农业科学,2023,60(3):651-663.
[26]艾鹏睿,马英杰,马亮. 干旱区滴灌枣棉间作模式下枣树棵间蒸发的变化规律[J]. 生态学报,2018,38(13):4761-4769.
[27]胡家帅,王振华,郑旭荣,等. 滴灌方式对南疆沙区成龄红枣土壤水分的影响 [J]. 灌溉排水学报,2019,38(4):43-47.
[28]戴秀,王坚强,任妮,等. 智能水肥一体化管控平台的设计与实现[J]. 江苏农业科学,2021,49(18):177-181.
[29]Han C J,Rui F C. Research on applied technology with PID control theory and design methods[J]. Advanced Materials Research,2014,886:369-373.
[30]张洋,马英杰. 不同生育期成龄灰枣树茎流速率与气象因子的关系[J]. 新疆农业科学,2021,58(9):1712-1722.
[31]Zhou Z H,Feng J. Deep forest[J]. National Science Review,2019,6(1):74-86.
[32]Alfaro V M,Vilanova R. Control of high-order processes:near-optimal robust tuning of PID regulators for repeated-pole plus dead-time models[J]. International Journal of Control,2024,97(1):72-85.
[33]Perthame L,Colbach N,Brunel-Muguet S,et al. Quantifying the nitrogen demand of individual plants in heterogeneous canopies:a case study with crop and weed species[J]. European Journal of Agronomy,2020,119:126102.
[34]蔡梅,黄兴召,温正宇,等. 不同树种树干茎流氮和可溶性有机碳动态变化及其影响因子[J]. 中南林业科技大学学报,2021,41(8):116-124.
[35]Mabrouk A I,Gordon D A,Gotsch S G,et al. Conceptual analysis:what signals might plant canopies send via stemflow?[J]. Frontiers in Water,2022,4:1075732.
[36]张洋,马英杰. 西北干旱区盛果期灰枣休眠期液流研究[J]. 果树学报,2021,38(6):934-946.
[37]程平,李长城,李宏,等. 漫灌条件下盛果期灰枣各生育期茎流变化[J]. 西南农业学报,2017,30(10):2315-2321.
[38]刘朋飞,郭浩,辛智鸣. 乌兰布和沙漠沙枣树干液流与环境因子关系[J]. 干旱区资源与环境,2021,35(9):177-184.
[39]吴新华,苗铮,郝元朔,等. 基于beta回归的迎春5号杨树树干密度混合效应模型[J]. 北京林业大学学报,2023,45(5):67-78.
[40]Xu D,Zhang Z X,Nie T Z,et al. Simulation study of CH4 and N2O emission fluxes from rice fields in Northeast China under different straw-returning and irrigation methods based on the DNDC model[J]. Water,2023,15(14):2633.
[41]Singh G,Vashisht B B,Sharma S. Customization of DNDC model:simulation of yield and nitrogen balance in rice (Oryza sativa L.) in relation to climate change,soil and management interventions[J]. Journal of the Indian Society of Soil Science,2018,66(3):275.
[42]张梓浩,郭飞,吴坤泽,等. 深度森林DF21模型在土壤镉含量高光谱反演中的性能评价[J]. 光谱学与光谱分析,2023,43(8):2638-2643.
[43]陈龙,张峰,蒋升. 小样本条件下基于深度森林学习模型的典型军事目标识别方法[J]. 中国电子科学研究院学报,2019,14(3):232-237.
[44]邬焜. 斯宾诺莎的神即自然实体的多面孔杂糅的哲学[J]. 系统科学学报,2019,27(2):1-7.
[45]刘永安. 人工技术实体伦理话语权的结构视角[J]. 自然辩证法研究,2021,37(5):29-35.
[46]顾力文,阮艳雯,刘晓刚. 基于人体特征曲线和开源软件二次开发的服装3D建模方法[J]. 东华大学学报(自然科学版),2019,45(2):275-284.
[47]廖伟智,张彬,徐国栋,等. 基于数字孪生的粮库可视化监控与管理系统研发[J]. 制造业自动化,2023,45(11):202-207.
[48]Zhu X R,Zhao L Y,Cao J M,et al. Fault diagnosis of 5G networks based on digital twin model[J]. China Communications,2023,20(7):175-191.
[49]曹小华,李泊桓,徐上尉. 基于MQTT协议的物联网岸电监控系统[J]. 计算机应用与软件,2023,40(3):11-16,27.
[50]康献民,陈尧,王建生,等. 机械装备的数字孪生结构参数分析与评价方法研究[J]. 机床与液压,2022,50(19):14-19.
[51]林梓君,刘婉玲,陈一民,等. 秸秆添加下土壤氮矿化对冻融交替响应的研究进展[J]. 中国农学通报,2023,39(36):75-82.
[52]陶飞,张辰源,戚庆林,等. 数字孪生成熟度模型[J]. 计算机集成制造系统,2022,28(5):1267-1281.
[53]Lima F A,Córcoles J I,Tarjuelo J M,et al. Model for management of an on-demand irrigation network based on irrigation scheduling of crops to minimize energy use (Part Ⅱ):financial impact of regulated deficit irrigation[J]. Agricultural Water Management,2019,215:44-54.
[54]Song C X,Oxley L,Ma H Y. What determines irrigation efficiency when farmers face extreme weather events?A field survey of the major wheat producing regions in China[J]. Journal of Integrative Agriculture,2018,17(8):1888-1899.
[55]郭二辉,胡聃,田朝阳,等. 土壤氮素与水分对植物光合生理生态的影响研究[J]. 安徽农业科学,2008,36(26):11211-11213.
[56]Abumadi F A,Semeraro C,Olabi A G,et al. Key research challenges in digital twin applications for demanufacturing[J]. IFAC-PapersOnLine,2022,55(10):2551-2556.
[57]Zheng X J,Shi Z Y,Wang Y R,et al. Digital twin modeling for district heating network based on hydraulic resistance identification and heat load prediction[J]. Energy,2024,288:129726.
[58]王高弟,白皓然,宋晨勇,等. 基于物联网的水肥精准管控系统设计[J]. 农机化研究,2020,42(8):207-211,217.
[59]靳正忠,王永东,雷加强,等. 塔里木沙漠公路防护林土壤环境因子的根际效应[J]. 中国沙漠,2018,38(4):808-814.
[60]王保莉,岑剑,武传东,等. 过量施肥下氮素形态对旱地土壤细菌多样性的影响[J]. 农业环境科学学报,2011,30(7):1351-1356.
[61]Cesco S,Sambo P,Borin M,et al. Smart agriculture and digital twins:applications and challenges in a vision of sustainability[J]. European Journal of Agronomy,2023,146:126809.

相似文献/References:

[1]谢铮辉,罗微,张慧坚,等.基于GPRS的作物生长环境监测系统设计[J].江苏农业科学,2014,42(11):443.
 Xie Zhenghui,et al().Design of crop growth environment monitoring system based on GPRS[J].Jiangsu Agricultural Sciences,2014,42(5):443.
[2]王克甫,蒋威.基于CC430的设施农业环境信息监测系统[J].江苏农业科学,2014,42(07):414.
 Wang Kefu,et al.Facility agriculture environment information monitoring system based on CC430[J].Jiangsu Agricultural Sciences,2014,42(5):414.
[3]高敬尧,王宏燕,许毛毛,等.生物炭施入对农田土壤及作物生长影响的研究进展[J].江苏农业科学,2016,44(10):10.
 Gao Jingyao,et al.Research progress of effect of biochar on agricultural soil and crop growth:a review[J].Jiangsu Agricultural Sciences,2016,44(5):10.
[4]葛道阔,曹宏鑫,杨余旺,等.基于作物生长模型的小麦区域化旱涝监测预警[J].江苏农业科学,2017,45(22):299.
 Ge Daokuo,et al.Monitoring and early warning of regional drought and waterlogged for wheat based on crop growth model[J].Jiangsu Agricultural Sciences,2017,45(5):299.
[5]周星,徐年龙,周娜娜,等.减氮条件下施用蚓粪对土壤性质及小麦生长的影响[J].江苏农业科学,2021,49(15):83.
 Zhou Xing,et al.Effects of vermicompost application on soil properties and wheat growth under reduced nitrogen[J].Jiangsu Agricultural Sciences,2021,49(5):83.
[6]张婧,陈庆锋,刘伟,等.秸秆还田对盐碱地土壤及作物生长的影响研究进展[J].江苏农业科学,2022,50(11):13.
 Zhang Jing,et al.Research progress on effects of straw returning on saline-alkali soil quality and crop growth[J].Jiangsu Agricultural Sciences,2022,50(5):13.
[7]史大炜,伍纲,杨其长,等.石墨烯材料在农业领域的应用研究进展[J].江苏农业科学,2023,51(7):39.
 Shi Dawei,et al.Research progress on application of graphene materials in agriculture[J].Jiangsu Agricultural Sciences,2023,51(5):39.
[8]顾汉柱,王琛,张瑛,等.水稻茎秆抗倒伏评价及其生理机制研究进展[J].江苏农业科学,2023,51(21):1.
 Gu Hanzhu,et al.Research progress on lodging resistance evaluation of rice stem and its physiological mechanism[J].Jiangsu Agricultural Sciences,2023,51(5):1.

备注/Memo

备注/Memo:
收稿日期:2024-02-06
基金项目:国家科技创新2030新一代人工智能重大项目(编号:2022ZD0119501);新疆生产建设兵团(重点领域)科技攻关计划(编号:2019AB002);中国农业科学院科技创新工程(编号:CAAS-ASTIP-2023-AII)。
作者简介:邹军(1997—),男,湖北十堰人,硕士研究生,主要从事农业数字孪生建模与应用研究。E-mail:452864187@qq.com。
通信作者:冯建中,博士,研究员,主要从事信息技术与数字农业的研究。E-mail:fengjianzhong@caas.cn。
更新日期/Last Update: 2025-03-05