|本期目录/Table of Contents|

[1]范立里,王凯利,吴蔼民.毛果杨糖基转移酶GT43基因家族分析[J].江苏农业科学,2025,53(7):29-38.
 Fan Lili,et al.Bioinformatics analysis of glycosyltransferase GT43 gene family in Populus trichocarpa[J].Jiangsu Agricultural Sciences,2025,53(7):29-38.
点击复制

毛果杨糖基转移酶GT43基因家族分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第53卷
期数:
2025年第7期
页码:
29-38
栏目:
生物技术
出版日期:
2025-04-05

文章信息/Info

Title:
Bioinformatics analysis of glycosyltransferase GT43 gene family in Populus trichocarpa
作者:
范立里王凯利吴蔼民
华南农业大学林学与风景园林学院,广东广州 510642
Author(s):
Fan Liliet al
关键词:
毛果杨糖基转移酶基因家族基因结构顺式作用元件
Keywords:
-
分类号:
S188;S718.43
DOI:
-
文献标志码:
A
摘要:
糖基转移酶基因通过催化植物体内化合物发生糖基化反应,改变这些化合物的生物活性和功能,进而影响植物的生长发育。为探究毛果杨GT43家族基因在木聚糖主链合成中的作用,本研究以毛果杨为材料,对杨树GT43基因家族成员进行生物信息学分析和基因表达研究。结果表明,毛果杨基因组中共鉴定到7个GT43基因成员,依次命名为GT43A~GT43G。其中,除GT43F外,其余6个家族成员均含有较完整的基因结构,1个共同的保守基序(motif2),1个保守的三级结构域,且N端存在1个或2个跨膜结构。系统发育分析发现,7个基因分别与拟南芥IRX9、IRX9-L、IRX14、IRX14-L是同源基因,并且亲缘关系较近。顺式作用元件分析表明,GT43基因家族成员主要含光响应元件、逆境胁迫相关元件以及激素响应相关元件。此外,除GT43F、GT43G外,其余5个基因主要在茎木质部中表达水平较高,表明GT43基因在杨树木质部形成过程中起着重要作用。综上,本研究分析了毛果杨GT43基因家族特征,其结果可为后续GT43基因家族参与木聚糖主链的合成研究提供理论基础。
Abstract:
-

参考文献/References:

[1]Zhou J M,Du X J,Zhou S L,et al. Selectively isolated hemicellulose with high whiteness and molecular weight from poplar by sodium perborate-assisted alkali extraction[J]. Cellulose,2023,30(8):4855-4871.
[2]Rao J,Lv Z W,Chen G G,et al. Hemicellulose:structure,chemical modification,and application[J]. Progress in Polymer Science,2023,140:101675.
[3]Luo Y P,Li Z,Li X L,et al. The production of furfural directly from hemicellulose in lignocellulosic biomass:a review[J]. Catalysis Today,2019,319:14-24.
[4]Mellerowicz E J,Gorshkova T A. Tensional stress generation in gelatinous fibres:a review and possible mechanism based on cell-wall structure and composition[J]. Journal of Experimental Botany,2012,63(2):551-565.
[5]Curry T M,Pea M J,Urbanowicz B R. An update on xylan structure,biosynthesis,and potential commercial applications[J]. The Cell Surface,2023,9:100101.
[6]Derba-Maceluch M,Sivan P,Donev E N,et al. Impact of xylan on field productivity and wood saccharification properties in aspen[J]. Frontiers in Plant Science,2023,14:1218302.
[7]Mortimer J C,Miles G P,Brown D M,et al. Absence of branches from xylan in Arabidopsis gux mutants reveals potential for simplification of lignocellulosic biomass[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(40):17409-17414.
[8]Petersen P D,Lau J,Ebert B,et al. Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynthesis mutants[J]. Biotechnology for Biofuels,2012,5(1):84.
[9]Ratke C,Terebieniec B K,Winestrand S,et al. Downregulating aspen xylan biosynthetic GT43 genes in developing wood stimulates growth via reprograming of the transcriptome[J]. New Phytologist,2018,219(1):230-245.
[10]Lim E K,Bowles D J. A class of plant glycosyltransferases involved in cellular homeostasis[J]. EMBO Journal,2004,23(15):2915-2922.
[11]Lairson L L,Henrissat B,Davies G J,et al. Glycosyltransferases:structures,functions,and mechanisms[J]. Annual Review of Biochemistry,2008,77:521-555.
[12]吴蔼民,赵先海,解巧丽,等. 葡萄糖醛酸木聚糖生物合成研究进展[J]. 华南农业大学学报,2015,36(4):1-10.
[13]Busse-Wicher M,Grantham N J,Lyczakowski J J,et al. Xylan decoration patterns and the plant secondary cell wall molecular architecture[J]. Bochemical Society Transaction,2016,44:74-78.
[14]Chong J,Baltz R,Schmitt C,et al. Downregulation of a pathogen-responsive tobacco UDP-Glc:phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation,enhances oxidative stress,and weakens virus resistance[J]. Plant Cell,2002,14(5):1093-1107.
[15]Lelarge-Trouverie C,Cohen M,Tremulot L,et al. Metabolite modification in oxidative stress responses:a case study of two defense hormones[J]. Free Radicl Blogogy and Medicine,2023,196:145-155.
[16]Bais V S,Batra S,Prakash B. Identification of two highly promiscuous thermostable sugar nucleotidylyltransferases for glycorandomization[J]. Febs Journal,2018,285(15):2840-2855.
[17]Tohge T,Nishiyama Y,Hirai M Y,et al. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor[J]. Plant Journal,2005,42(2):218-235.
[18]Poppenberger B,Berthiller F,Lucyshyn D,et al. Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP - glucosyltransferase from Arabidopsis thaliana[J]. Journal of Bilogical Chemistry,2003,278(48):47905-47914.
[19]Fujioka S,Sakurai A. Biosynthesis and metabolism of brassinosteroids[J]. Physiologia Plantarum,1997,100(3):710-715.
[20]Woodward A W,Bartel B. A receptor for auxin[J]. The Plant Cell,2005,17(9):2425-2429.
[21]Smith P J,Wang H T,York W S,et al. Designer biomass for next-generation biorefineries:leveraging recent insights into xylan structure and biosynthesis[J]. Biotechnology for Biofuels,2017,10:286.
[22]Oikawa A,Joshi H J,Rennie E A,et al. An integrative approach to the identification of Arabidopsis and rice genes involved in xylan and secondary wall development[J]. PLoS One,2010,5(11):e15481.
[23]Lee C H,Zhong R Q,Ye Z H. Arabidopsis family GT43 members are xylan xylosyltransferases required for the elongation of the xylan backbone[J]. Plant and Cell Physiology,2012,53(1):135-143.
[24]Lee C H,Teng Q,Huang W L,et al. The Arabidopsis family GT43 glycosyltransferases form two functionally nonredundant groups essential for the elongation of glucuronoxylan backbone[J]. Plant Physiology,2010,153(2):526-541.
[25]Pea M J,Zhong R Q,Zhou G K,et al. Arabidopsis irregular xylem8 and irregular xylem9:implications for the complexity of glucuronoxylan biosynthesis[J]. 2007,19(2):549-563.
[26]Wu A M,Hrnblad E,Voxeur A,et al. Analysis of the Arabidopsis IRX9/IRX9-L and IRX14/IRX14-L pairs of glycosyltransferase genes reveals critical contributions to biosynthesis of the hemicellulose glucuronoxylan[J]. Plant Physiology,2010,153(2):542-554.
[27]万峰. 水稻糖基转移酶GT43基因家族生物信息学分析及遗传转化研究[D]. 长春:吉林农业大学,2017.
[28]Lee C H,Teng Q,Zhong R Q,et al. Functional roles of rice glycosyltransferase family GT43 in xylan biosynthesis[J]. Plant Signaling & Behavior,2014,9(1):e27809.
[29]Yang G,Cao W Q,Liu D X,et al. Growth and development simulation based on functional-structural model GreenLab for poplar (Salicaceae)[J]. African Journal of Agricultural Research,2011,6(13):3071-3077.
[30]Plomion C,Leprovost G,Stokes A. Wood formation in trees[J]. Plant Physiology,2001,127(4):1513-1523.
[31]Hurst L D. The Ka/Ks ratio:diagnosing the form of sequence evolution[J]. Trends in Genetics,2002,18(9):486.
[32]Lee C H,Teng Q,Zhong R Q,et al. Molecular dissection of xylan biosynthesis during wood formation in poplar[J]. Molecular Plant,2011,4(4):730-747.
[33]Brown D M,Goubet F,Wong V W,et al. Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis[J]. The Plant Journal,2007,52(6):1154-1168.
[34]Lee C H,Teng Q,Zhong R Q,et al. Three Arabidopsis DUF579 domain-containing GXM proteins are methyltransferases catalyzing 4-O-methylation of glucuronic acid on xylan[J]. Plant & Cell Physiology,2012,53(11):1934-1949.
[35]Chiniquy D,Varanasi P,Oh T,et al. Three novel rice genes closely related to the Arabidopsis IRX9 IRX9L and IRX14 genes and their roles in xylan biosynthesis[J]. Frontiers in Plant Science,2013,4:83.
[36]Li Z,Wang X Y,Yang K B,et al. Identification and expression analysis of the glycosyltransferase GT43 family members in bamboo reveal their potential function in xylan biosynthesis during rapid growth[J]. BMC Genomics,2021,22(1):867.

相似文献/References:

[1]奈婕菲,程玉祥.一个杨树GDSL基因组织表达的特性及其在拟南芥异源的表达[J].江苏农业科学,2014,42(03):16.
 Nai Jiefei,et al.Tissue expression of a poplar GDSL gene and its heterologous expression analysis in Arabidopsis thaliana[J].Jiangsu Agricultural Sciences,2014,42(7):16.
[2]沈红梅,程玉祥.杨树PtrRHH94突变体创制及功能初步分析[J].江苏农业科学,2020,48(22):44.
 Shen Hongmei,et al.Mutant production and functional analysis of PtrRHH94 gene in populus[J].Jiangsu Agricultural Sciences,2020,48(7):44.
[3]毕田田,张骐,代金玲,等.毛果杨PtIPT5基因的克隆及低温胁迫表达分析[J].江苏农业科学,2023,51(22):14.
 Bi Tiantian,et al.Cloning of PtIPT5 gene in Populus trichocarpa and its expression analysis under low temperature stress[J].Jiangsu Agricultural Sciences,2023,51(7):14.

备注/Memo

备注/Memo:
收稿日期:2024-04-25
基金项目:广东省自然科学基金面上项目(编号:2023A1515010379)。
作者简介:范立里(1998— ),女,四川达州人,硕士研究生,研究方向为林木生物学。E-mail:2743571662@qq.com。
通信作者:吴蔼民,博士,教授,研究方向为林木生物学。E-mail:wuaimin@scau.edu.cn。
更新日期/Last Update: 2025-04-05