|本期目录/Table of Contents|

[1]文艺,文涛,牛国庆,等.基于大数据鉴定农田和非农业土壤细菌群落组成及功能特征[J].江苏农业科学,2025,53(8):242-248.
 Wen Yi,et al.Integrated analysis of composition and functional characteristics of bacterial communities in farmland and non-agricultural soils[J].Jiangsu Agricultural Sciences,2025,53(8):242-248.
点击复制

基于大数据鉴定农田和非农业土壤细菌群落组成及功能特征(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第53卷
期数:
2025年第8期
页码:
242-248
栏目:
资源与环境
出版日期:
2025-04-20

文章信息/Info

Title:
Integrated analysis of composition and functional characteristics of bacterial communities in farmland and non-agricultural soils
作者:
文艺1文涛2牛国庆2曾建国2景天忠1袁军2
1.东北林业大学林学院,黑龙江哈尔滨 150036; 2.南京农业大学资源与环境科学学院,江苏南京 210095
Author(s):
Wen Yiet al
关键词:
自然生态系统土壤农田土壤微生物组成和功能机器学习
Keywords:
-
分类号:
S182
DOI:
-
文献标志码:
A
摘要:
随着农业的发展,农田土壤生态功能急剧下降,从而导致了农田土壤肥力的下降以及病虫害的严重威胁,这对农业的可持续发展构成了严重挑战。与农田土壤相比,自然生态系统土壤(如森林、草原和湿地等非农业土壤)往往能够维持较高的生态功能。通过对农田土壤和非农业土壤微生物群落及功能的研究发现,农田土壤细菌群落的多样性显著高于非农业土壤群落。通过物种组成分析以及机器学习等方法研究发现,在非农业土壤中显著富集了酸杆菌门(Acidobacteria)、疣微菌门(Verrucomicrobia)和浮霉菌门(Planctomycetes),在农田中显著富集放线菌门(Actinobacteria)、拟杆菌门(Bacteroidetes)和变形菌门(Proteobacteria)。微生物网络分析结果显示,非农业土壤中细菌之间的联系较农田土壤更加紧密。此外,在微生物代谢功能方面,观察到在农田中显著富集了光合作用天线蛋白和各种类型的N聚糖生物合成等功能,而在非农业土壤中大量富集了泛酸和辅酶A的生物合成等功能。通过元素循环分析发现,甲醇氧化、氨氧化等反应在农田土壤中显著富集,而甲烷营养等过程在非农业土壤中显著富集。综上所述,总体来看,非农业土壤细菌群落的复杂性更高,功能性更强,这些发现对理解并调控农田土壤生态系统的功能具有重要意义。
Abstract:
-

参考文献/References:

[1]朱永官,彭静静,韦中,等. 土壤微生物组与土壤健康[J]. 中国科学(生命科学),2021,51(1):1-11.
[2]林佳敏,郑甜甜,袁慧兰,等. 生态系统生境改变对土壤微生物群落结构的影响[J]. 土壤通报,2024,55(1):149-160.
[3]Pan J,Liu Y,He N P,et al. The influence of forest-to-cropland conversion on temperature sensitivity of soil microbial respiration across tropical to temperate zones[J]. Soil Biology and Biochemistry,2024,191:109322.
[4]Lauber C L,Strickland M S,Bradford M A,et al. The influence of soil properties on the structure of bacterial and fungal communities across land-use types[J]. Soil Biology and Biochemistry,2008,40(9):2407-2415.
[5]Chaparro J M,Sheflin A M,Manter D K,et al. Manipulating the soil microbiome to increase soil health and plant fertility[J]. Biology and Fertility of Soils,2012,48(5):489-499.
[6]Glick B R. Plant growth-promoting bacteria:mechanisms and applications[J]. Scientifica,2012,2012:963401.
[7]韦中,沈宗专,杨天杰,等. 从抑病土壤到根际免疫:概念提出与发展思考[J]. 土壤学报,2021,58(4):814-824.
[8]Wen T,Ding Z X,Thomashow L S,et al. Deciphering the mechanism of fungal pathogen-induced disease-suppressive soil[J]. New Phytologist,2023,238(6):2634-2650.
[9]Wen T,Zhao M L,Yuan J,et al. Root exudates mediate plant defense against foliar pathogens by recruiting beneficial microbes[J]. Soil Ecology Letters,2021,3(1):42-51.
[10]Louca S,Parfrey L W,Doebeli M. Decoupling function and taxonomy in the global ocean microbiome[J]. Science,2016,353(6305):1272-1277.
[11]张萌,卢杰,张新军. 从微观角度浅析土壤微生物多样性的影响因素[J]. 四川林业科技,2022,43(4):149-154.
[12]陈桂鲜,吴传发,葛体达,等. 土壤多功能性对微生物多样性降低的响应[J]. 环境科学,2022,43(11):5274-5285.
[13]王光华,刘俊杰,于镇华,等. 土壤酸杆菌门细菌生态学研究进展[J]. 生物技术通报,2016,32(2):14-20.
[14]Nunes da Rocha U,Plugge C M,George I,et al. The rhizosphere selects for particular groups of Acidobacteria and Verrucomicrobia[J]. PLoS One,2013,8(12):e82443.
[15]罗健雅,黄紫贝,赵以恒,等. 抗广谱耐药细菌的放线菌筛选及抗菌活性研究[J]. 中国抗生素杂志,2023,48(11):1229-1241.
[16]龚亚,李越中. 近缘细菌细胞间的相互识别与相互作用[J]. 微生物学通报,2019,46(2):332-338.
[17]Liu X J,Ma K P. Plant functional traits:concepts,applications and future directions[J]. Scientia Sinica Vitae,2015,45(4):325-339.
[18]Pankratov T A,Ivanova A O,Dedysh S N,et al. Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat[J]. Environmental Microbiology,2011,13(7):1800-1814.
[19]Conrad R. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments[J]. FEMS Microbiology Ecology,1999,28(3):193-202.
[20]Chu H Y,Fierer N,Lauber C L,et al. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes[J]. Environmental Microbiology,2010,12(11):2998-3006.
[21]徐影,于镇华,李彦生,等. 土壤酸化成因及其对农田土壤-微生物-作物系统影响的研究进展[J]. 土壤通报,2024,55(2):562-572.
[22]Barak P,Jobe B O,Krueger A R,et al. Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin[J]. Plant and Soil,1997,197(1):61-69.
[23]Jarvis S C,Hatch D J. The effects of aluminium on the growth of white clover dependent upon fixation of atmospheric nitrogen[J]. Journal of Experimental Botany,1985,36(7):1075-1086.
[24]Li X G,Chen D L,Carrión V J,et al. Acidification suppresses the natural capacity of soil microbiome to fight pathogenic Fusarium infections[J]. Nature Communications,2023,14(1):5090.
[25]Li S L,Liu Y Q,Wang J,et al. Soil acidification aggravates the occurrence of bacterial wilt in South China[J]. Frontiers in Microbiology,2017,8:703.
[26]Ghorbani R,Wilcockson S,Koocheki A,et al. Soil management for sustainable crop disease control:a review[J]. Environmental Chemistry Letters,2008,6(3):149-162.
[27]姚佳妮,代金霞,刘爽,等. 宁夏荒漠草原典型灌丛根际土壤细菌群落结构与功能[J]. 生态学报,2024,44(20):9285-9299.
[28]Kotsyurbenko O R,Nozhevnikova A N,Zavarzin G A. Methanogenic degradation of organic matter by anaerobic bacteria at low temperature[J]. Chemosphere,1993,27(9):1745-1761.

相似文献/References:

[1]朱灵峰,龚诗雯,郭毅萍,等.小麦秸秆对农田土壤中重金属Cu吸附的影响[J].江苏农业科学,2016,44(01):326.
 Zhu Lingfeng,et al.Effect of wheat straw on adsorption of heavy metal Cu in farmland soil[J].Jiangsu Agricultural Sciences,2016,44(8):326.
[2]呼佳宁,李向东,冯启言,等.煤层气田产出水灌溉对土壤性质的影响[J].江苏农业科学,2016,44(07):459.
 Hu Jianing,et al.Effect of irrigation using coal-bed gas field produced water on soil property[J].Jiangsu Agricultural Sciences,2016,44(8):459.
[3]郭李凯,任珊珊,毕斌,等.煤矸山下农田土壤重金属的空间分布及生态风险评价[J].江苏农业科学,2016,44(08):467.
 Guo Likai,et al.Evaluation on distribution and ecological risk of farmland soil heavy metals under coal waste pile[J].Jiangsu Agricultural Sciences,2016,44(8):467.
[4]高敬尧,王宏燕,许毛毛,等.生物炭施入对农田土壤及作物生长影响的研究进展[J].江苏农业科学,2016,44(10):10.
 Gao Jingyao,et al.Research progress of effect of biochar on agricultural soil and crop growth:a review[J].Jiangsu Agricultural Sciences,2016,44(8):10.
[5]曹丽花,刘合满,杨东升.农田土壤固碳潜力的影响因素及其调控(综述)[J].江苏农业科学,2016,44(10):16.
 Cao Lihua,et al.Factors influencing soil carbon sequestration potential and its adjustment measures in farmland:a review[J].Jiangsu Agricultural Sciences,2016,44(8):16.
[6]马小婷,隋玉柱,朱振林,等.秸秆还田对农田土壤碳库和温室气体排放的影响研究进展[J].江苏农业科学,2017,45(06):14.
 Ma Xiaoting,et al.Research progress on effects of returning crop residues to soil on soil organic carbon pool and greenhouse gas emission[J].Jiangsu Agricultural Sciences,2017,45(8):14.
[7]张东明,吕新,王海江,等.工业区农田土壤有效态重金属相关性分析及空间分布研究[J].江苏农业科学,2018,46(12):223.
 Zhang Dongming,et al.Correlation analysis and spatial distribution of available heavy metals of agricultural soil in industrial area[J].Jiangsu Agricultural Sciences,2018,46(8):223.
[8]房瑜静,秦端端,陈望舒,等.保水剂对土壤铜形态和植物吸铜的影响[J].江苏农业科学,2018,46(19):319.
 Fang Yujing,et al.Effects of water retaining agent on transformation of Cu forms in soil and Cu uptake of plant[J].Jiangsu Agricultural Sciences,2018,46(8):319.
[9]杨雪玲,刘慧琳,葛畅,等.北京平原区土壤镉空间分布特征及健康风险评估[J].江苏农业科学,2019,47(20):260.
 Yang Xueling,et al.Spatial distribution characteristics and health risk assessment of Cd in soil in Beijing plain[J].Jiangsu Agricultural Sciences,2019,47(8):260.
[10]隽英华,刘艳,宫亮,等.农田土壤氮素转化特征对冻融作用的响应[J].江苏农业科学,2019,47(21):282.
 Juan Yinghua,et al.Response of nitrogen transformation properties to freezing-thawing cycles in farmland soils[J].Jiangsu Agricultural Sciences,2019,47(8):282.

备注/Memo

备注/Memo:
收稿日期:2024-05-21
基金项目:国家自然科学基金(编号:42307394);江苏省自然科学基金(编号:BK20230993)。
作者简介:文艺(1999—),女,山西临汾人,硕士研究生,主要研究方向为土壤微生物。E-mail:13223549087@163.com。
通信作者:文涛,博士,讲师,主要研究土壤微生物。E-mail:2018203048@njau.edu.cn。
更新日期/Last Update: 2025-04-20