|本期目录/Table of Contents|

[1]陈斌,田桂华.红外热成像技术在植物病害检测中的应用研究进展[J].江苏农业科学,2014,42(09):1-4.
 Chen Bin,et al.Research progress on application of infrared thermal imaging technology in detection of plant diseases[J].Jiangsu Agricultural Sciences,2014,42(09):1-4.
点击复制

红外热成像技术在植物病害检测中的应用研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第42卷
期数:
2014年09期
页码:
1-4
栏目:
专论
出版日期:
2014-09-25

文章信息/Info

Title:
Research progress on application of infrared thermal imaging technology in detection of plant diseases
作者:
陈斌 田桂华
江苏大学食品与生物工程学院,江苏镇江 212013
Author(s):
Chen Binet al
关键词:
红外热成像技术植物病害监测侵染性病害非侵染性病害改进方法
Keywords:
-
分类号:
S431.9
DOI:
-
文献标志码:
A
摘要:
当植物遭受病害胁迫时,会造成气孔异质性开闭,水分调节失衡,叶表温度异常改变。红外热成像技术是一种将目标物体的红外热辐射转化成与物体表面热分布相应的可视图像技术,叶温变化是其监测诊断植物病害的观测指标。本文介绍了红外热成像技术在植物病害检测上的应用研究现状,总结了红外热成像技术在植物病害检测领域存在的问题及改进方法的研究。
Abstract:
-

参考文献/References:

[1]冯雷,张德荣,陈双双,等. 基于高光谱成像技术的茄子叶片灰霉病早期检测[J]. 浙江大学学报:农业与生命科学版,2012,38(3):311-317.
[2]李菊欢. 红外热成像仪在电气安全温度测试中的应用[J]. 日用电器,2012(3):45-48.
[3]杨小林,吕伯平,先明乐. 飞机复合材料红外热像检测中的热激励方法[J]. 无损检测,2008,30(6):369-371.
[4]蒋崇博,王军,郑志新,等. 红外热成像在神经根型颈椎病定位诊断的临床观察[J]. 临床军医杂志,2011,39(4):679-680.
[5]党云萍,李春霞,刘东雄. 水分胁迫对植物生理生化研究进展[J]. 陕西农业科学,2012(5):89-93,122.
[6]Hirasawa T,Wakabayashi K,Touya S,et al. Stomatal responses to water deficits and abscisic acid in leaves of sunflower plants(Helianthus annuus L.)grown under different conditions[J]. Plant and Cell Physiology,1995,36(6):955-964.
[7]Nayyar H,Bains T,Kumar S. Low temperature induced floral abortion in chickpea:relationship to abscisic acid and cryoprotectants in reproductive organs[J]. Environmental and Experimental Botany,2005,53(1):39-47.
[8]马媛媛,肖霄,张文娜. 植物低温逆境胁迫研究综述[J]. 安徽农业科学,2012,40(12):7007-7008,7099.
[9]Lindenthal M,Steiner U,Dehne H W,et al. Effect of downy mildew development on transpiration of cucumber leaves visualized by digital infrared thermography[J]. Phytopathology,2005,95(3):233-240.
[10]梁喜龙,郑殿峰,左豫虎.病害逆境下寄主植物生理生化指标的研究现状与展望[J]. 安徽农业科学,2006,34(15):3576-3578,3581.
[11]Oerke E C,Steiner U,Dehne H W,et al. Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions[J]. Journal of Experimental Botany,2006,57(9):2121-2132.
[12]Sankaran S,Mishra A,Ehsani R,et al. A review of advanced techniques for detecting plant diseases[J]. Computers and Electronics in Agriculture,2010,72(1):1-13.
[13]范志金,刘秀峰,刘凤丽,等. 水杨酸在诱导系统获得抗性中的信号传导作用[J]. 农药,2004,43(6):257-260.
[14]Wang M,Ling N,Dong X,et al. Thermographic visualization of leaf response in cucumber plants infected with the soil-borne pathogen Fusarium oxysporum f. sp. cucumerinum[J]. Plant Physiology and Biochemistry,2012,61(61):153-161.
[15]王晓黎,崔世茂,张志刚,等. 水杨酸对黄瓜子叶表皮气孔开度的调节作用[J]. 西北植物学报,2011,31(2):305-314.
[16]权宏,施和平,李玲. 脱落酸诱导气孔关闭的信号转导研究[J]. 植物学通报,2003,20(6):664-670.
[17]Berni J A J,Zarco-Tejada P J,Sepulcre-Cantó G,et al. Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery[J]. Remote Sensing of Environment,2009,113(11):2380-2388.
[18]Chaerle L,van der Straeten D. Imaging techniques and the early detection of plant stress[J]. Trends in Plant Science,2000,5(11):495-501.
[19]Leinonen I,Grant O M,Tagliavia C P P,et al. Estimating stomatal conductance with thermal imagery[J]. Plant,Cell & Environment,2006,29(8):1508-1518.
[20]Jones H G. Irrigation scheduling:advantages and pitfalls of plant-based methods[J]. Journal of Experimental Botany,2004,55(47):2427-2436.
[21]Jones H G. Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling[J]. Agricultural and Forest Meteorology,1999,95(3):139-149.
[22]Zarco-Tejada P J. González-Dugo V,Berni J A J. Fluorescence,temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera[J]. Remote Sensing of Environment,2012,117(15):322-337.
[23]Grant O M,Tronina L,Jones H G,et al. Exploring thermal imaging variables for the detection of stress responses in grapevine under different irrigation regimes[J]. Journal of Experimental Botany,2007,58(4):815-825.
[24]Ben-Gal A,Agam N,Alchanatis V,et al. Evaluating water stress in irrigated olives:correlation of soil water status,tree water status,and thermal imagery[J]. Irrigation Science,2009,27(5):367-376.
[25]程麒,黄春燕,王登伟,等. 基于红外热图像的棉花花铃期水分胁迫指数与光合参数的关系[J]. 新疆农业科学,2012,49(6):999-1006.
[26]Nielsen D C. Scheduling irrigations for soybeans with the Crop Water Stress Index(CWSI)[J]. Field Crop Research,1990,23(2):103-116.
[27]Grant O M,Chaves M M. Thermal imaging successfully identifies water stress in field-grown grapevines[C]. Germany:ⅩⅣ International GESCO Viticulture Congress,2005.
[28]Stoll M,Jones H. Thermal imaging as a viable tool for monitoring plant stress[J]. International Journal of Vine and Wine Sciences,2007,41(2):77-84.
[29]Grant O M,Chaves M M,Jones H G. Optimizing thermal imaging as a technique for detecting stomatal closure induced by drought stress under greenhouse conditions[J]. Physiologia Plantarum,2006,127(3):507-518.
[30]Jones H G,Stoll M,Santos T,et al. Use of infrared thermography for monitoring stomatal closure in the field:application to grapevine[J]. Journal of Experimental Botany,2002,53(378):2249-2260.
[31]Luquet D,Bégué A,Vidal A,et al. Using multidirectional thermography to characterize water status of cotton[J]. Remote Sensing of Environment,2003,84(3):411-421.
[32]Oshaughnessy S A,Evett S R,Colaizzi P D,et al. Using radiation thermography and thermometry to evaluate crop water stress in soybean and cotton[J]. Agricultural Water Management,2011,98(10):1523-1535.
[33]Silva M A,Jifon J L,Silva J A G,et al. Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane[J]. Plant Physiology,2007,19(3):193-201.
[34]刘亚,丁俊强,苏巴钱德,等. 基于远红外热成像的叶温变化与玉米苗期耐旱性的研究[J]. 中国农业科学,2009,42(6):2192-2201.
[35]Oerke E C,Frhling P,Steiner U. Thermographic assessment of scab disease on apple leaves[J]. Precision Agriculture,2011,12(5):699-715.
[36]Lenthe J H,Oerke E C,Dehne H W. Digital infrared thermography for monitoring canopy health of wheat[J]. Precision Agriculture,2007,8(1/2):15-26.
[37]Chaerle L,Van Caeneghem W,Messens E,et al. Presymptomatic visualization of plant-virus interactions by thermography[J]. Nature Biotechnology,1999,17:813-816.
[38]徐小龙. 基于红外热成像技术的植物病害早期检测的研究[D]. 杭州:浙江大学,2012.
[39]Stoll M,Schultz H R,Berkelmann-Loehnertz B. Thermal sensitivity of grapevine leaves affected by Plasmopara viticola and water stress[J]. Vitis,2008,47(2):133-134.
[40]Chaerle L,Hagenbeek D,de Bruyne E,et al. Thermal and chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage[J]. Plant & Cell Physiology,2004,45(7):887-896.
[41]周建民,周其显,刘燕德. 红外热成像技术在农业生产中的应用[J]. 农机化研究,2010,32(2):1-4,51.
[42]徐义广,刘波,李艳红,等. 被动式与主动式红外热成像技术研究[J]. 应用光学,2008,29(增刊):44-48.
[43]凌军,张拴勤,潘家亮,等. 植物蒸腾作用对红外辐射特征的影响研究[J]. 光谱学与光谱分析,2012,32(7):1775-1779.
[44]周其显. 苹果早期机械损伤的红外热成像检测研究[D]. 南昌:华东交通大学,2011.
[45]石颖桥. 红外图像增强技术及检测方法的研究[D]. 郑州:郑州大学,2012.
[46]朱圣盼. 基于计算机视觉技术的植物病害检测方法的研究[D]. 杭州:浙江大学,2007.
[47]杨龙. 红外热像和可见光图像融合[D]. 合肥:安徽大学,2012.
[48]葛小青. 红外与可见光图像融合的研究[D]. 重庆:重庆大学,2010.
[49]彭逸月. 红外与可见光图像配准及融合技术的研究[D]. 南京:南京理工大学,2012.
[50]Mōller M,Alchanatis V,Cohen Y,et al. Use of thermal and visible imagery for estimating crop water status of irrigated grapevine[J]. Journal of Experimental Botany,2007,58(4):827-838.
[51]张东彦,张竞成,朱大洲,等. 小麦叶片胁迫状态下的高光谱图像特征分析研究[J]. 光谱学与光谱分析,2011,31(4):1101-1105.
[52]巴邦齐达. 基于高光谱成像技术的烟叶病害识别方法研究[D]. 杭州:浙江大学,2011.
[53]黄春燕,赵鹏举,王登伟,等. 基于红外热图像的棉花水分胁迫指数高光谱遥感估算研究[J]. 红外,2012,33(6):17-21,45.
[54]赵鹏举. 用高光谱遥感和红外热图像监测棉花干旱胁迫状况的研究[D]. 石河子:石河子大学,2009.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2013-11-28
基金项目:国家自然科学基金(编号:3117169、31271874)。
作者简介:陈斌(1960—),男,江苏镇江人,博士,教授,研究方向为食品与农产品无损检测技术。E-mail:ncp@ujs.edu.cn。
更新日期/Last Update: 2014-09-25