|本期目录/Table of Contents|

[1]余璐璐,曹中权,刘龙山,等.盐芥CAS基因的生物信息学分析及在盐胁迫下的表达[J].江苏农业科学,2015,43(07):25-29.
 Yu Lulu,et al.Bioinformatics analysis of CAS gene and its expression profile under salt stress in Thellungiella salsuginea[J].Jiangsu Agricultural Sciences,2015,43(07):25-29.
点击复制

盐芥CAS基因的生物信息学分析及在盐胁迫下的表达(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第43卷
期数:
2015年07期
页码:
25-29
栏目:
生物技术
出版日期:
2015-07-25

文章信息/Info

Title:
Bioinformatics analysis of CAS gene and its expression profile under salt stress in Thellungiella salsuginea
作者:
余璐璐1 曹中权2 刘龙山2 范 崎2 黄格格2 徐 飞12
1.武汉生物工程学院应用生物技术研究中心,湖北武汉 430415;2.武汉生物工程学院生命科学与技术学院,湖北武汉 430415
Author(s):
Yu Luluet al
关键词:
盐芥氰丙氨酸合酶盐胁迫基因分析基因表达生物信息学
Keywords:
-
分类号:
Q945.78
DOI:
-
文献标志码:
A
摘要:
盐芥(Thellungiella salsuginea)是一种新型的模式植物,具耐盐特性,但盐芥的抗盐机理仍不清楚。本研究对盐芥氰丙氨酸合酶(cyanoalanine synthase,CAS)基因进行了生物信息学分析,并检测了盐胁迫条件下CAS基因的表达变化。生物信息学分析表明,编码盐芥CAS合酶的基因含有9个外显子和8个内含子,CAS合酶偏酸性,主要定位于细胞质中起作用。启动子分析表明,盐芥CAS基因启动子上有多个盐胁迫响应元件。进一步的盐胁迫试验表明,盐芥植株在200 mmol/L NaCl胁迫条件下表现出较强的抗性,CAS基因受胁迫诱导上升。盐胁迫处理后9 h,CAS基因表达高出对照组材料2倍,氰化氢(HCN)含量被降低到较低水平。这些结果表明,CAS基因在盐芥胁迫应答反应中起重要作用。
Abstract:
-

参考文献/References:

[1]Wu H J,Zhang Z H,Wang J Y,et al. Insights into salt tolerance from the genome of Thellungiella salsuginea[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(30):12219-12224.
[2]王新宇,于 涛. 盐芥耐盐机制的组学研究[J].现代农业科技,2012(20):228-229,232.
[3]Higashi Y,Ohama N,Ishikawa T,et al. HsfA1d,a protein identified via fox hunting using Thellungiella salsuginea cDNAs improves heat tolerance by regulating heat-stress-responsive gene expression[J]. Molecular Plant,2013,6(2):411-422.
[4]Pedras M,Zheng Q A. Metabolic responses of Thellungiella halophila/salsuginea to biotic and abiotic stresses:metabolite profiles and quantitative analyses[J]. Phytochemistry,2010,71(5/6):581-589.
[5]Taranov V V,Berdnikova M V,Nosov A V,et al. Cold shock domain proteins in the extremophyte Thellungiella salsuginea (salt cress):gene structure and differential response to cold[J]. Molecular Biology,2010,44(5):889-897.
[6]杨劲松. 中国盐渍土研究的发展历程与展望[J].土壤学报,2008,45(5):837-845.
[7]王宝山,赵可夫,邹 琦.作物耐盐机理研究进展及提高作物抗盐性的对策[J].植物学通报,1997(增刊1):26-31.
[8]李 彦,张英鹏,孙 明,等.盐分胁迫对植物的影响及植物耐盐机理研究进展[J].中国农学通报,2008,24(1):258-265.
[9]Abeles F B,Morgan P W,Saltveit Jr M E. Ethylene in plant biology[M]. New York:Academic Press,2012:56.
[10]Morgan P W,Drew M C. Ethylene and plant responses to stress[J]. Physiologia Plantarum,1997,100(3):620-630.
[11]Lee T C,Kalenius E,Lazar A I,et al. Chemistry inside molecular containers in the gas phase[J]. Nature Chemistry,2013,5(5):376-382.
[12]Xu F,Zhang D W,Zhu F,et al. A novel role for cyanide in the control of cucumber (Cucumis sativus L.) seedlings response to environmental stress[J]. Plant,Cell & Environment,2012,35(11):1983-1997.
[13]Yi H,Juergens M,Jez J M. Structure of soybean β-cyanoalanine synthase and the molecular basis for cyanide detoxification in plants[J]. The Plant Cell,2012,24(6):2696-2706.
[14]Gong Q Q,Li P H,Ma S S,et al. Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana[J]. The Plant Journal,2005,44(5):826-839.
[15]Velikova V,Yordanov I,Edreva A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants:protective role of exogenous polyamines[J]. Plant Science,2000,151(1):59-66.
[16]Xu F,Yuan S,Zhang D W,et al. The role of alternative oxidase in tomato fruit ripening and its regulatory interaction with ethylene[J]. Journal of Experimental Botany,2012,63(15):5705-5716.
[17]Kichtenthaler H K,Wellburn A R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvent[J]. Biochemical Society Transactions,1983,603:591-593.
[18]Wang Z L,Li P H,Fredricksen M,et al. Expressed sequence tags from Thellungiella halophila,a new model to study plant salt-tolerance[J]. Plant Science,2004,166(3):609-616.
[19]Lugan R,Niogret M F,Leport L,et al. Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte[J]. The Plant Journal,2010,64(2):215-229.
[20]García I,Castellano J M,Vioque B,et al. Mitochondrial beta-cyanoalanine synthase is essential for root hair formation in Arabidopsis thaliana[J]. The Plant Cell,2010,22(10):3268-3279.
[21]Seo S,Mitsuhara I,Feng J,et al. Cyanide,a coproduct of plant hormone ethylene biosynthesis,contributes to the resistance of rice to blast fungus[J]. Plant Physiology,2011,155(1):502-514.
[22]Liao Y W,Shi K,Fu L J,et al. The reduction of reactive oxygen species formation by mitochondrial alternative respiration in tomato basal defense against TMV infection[J]. Planta,2012,235(2):225-238.
[23]Ebbs S D,Kosma D K,Nielson E H,et al. Nitrogen supply and cyanide concentration influence the enrichment of nitrogen from cyanide in wheat (Triticum aestivum L.) and sorghum (Sorghum bicolor L.)[J]. Plant,Cell & Environment,2010,33(7):1152-1160.
[24]Gniazdowska A,Krasuska U,Bogatek R. Dormancy removal in apple embryos by nitric oxide or cyanide involves modifications in ethylene biosynthetic pathway[J]. Planta,2010,232(6):1397-1407.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2015-05-04
基金项目:国家自然科学基金(编号:31400242);武汉生物工程学院校本研究项目(编号:2014K03)。
作者简介:余璐璐(1984—),女,湖北随州人,硕士,助教,主要从事植物生理生态研究。E-mail:785837433@qq.com。
通信作者:徐 飞,男,博士,讲师,主要从事植物逆境生理研究。E-mail:feixu666@hotmail.com。
更新日期/Last Update: 2015-07-25