|本期目录/Table of Contents|

[1]付昕,葛泰根,朱方,等.氧化铜纳米颗粒的环境影响及其生态毒理效应综述[J].江苏农业科学,2015,43(08):340-344.
 Fu Xin,et al.Environmental implication and ecotoxicological effect of copper oxide nanomaterials:a review[J].Jiangsu Agricultural Sciences,2015,43(08):340-344.
点击复制

氧化铜纳米颗粒的环境影响及其生态毒理效应综述(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第43卷
期数:
2015年08期
页码:
340-344
栏目:
资源与环境
出版日期:
2015-08-25

文章信息/Info

Title:
Environmental implication and ecotoxicological effect of copper oxide nanomaterials:a review
作者:
付昕 葛泰根 朱方 薛永来 杜道林
江苏大学环境与安全工程学院,江苏镇江 212013
Author(s):
Fu Xinet al
关键词:
纳米氧化铜环境健康生态毒理细胞生物体综述
Keywords:
-
分类号:
TQ131.2+1;X171.5
DOI:
-
文献标志码:
A
摘要:
随着纳米科技的迅猛发展,多种纳米材料被广泛应用并逐步进入到周围的环境及生命体中,纳米材料的生物安全性和生态毒理学效应逐渐成为国内外关注的热点。纳米氧化铜(CuO)因具有良好的杀菌性、催化特性、热稳定性而被广泛应用于涂料、废水处理、杀菌、生物医用陶瓷材料等领域,因此它将不可避免地进入环境和生态系统中,并引起相应的环境毒理效应。本文从流行病学调查和试验研究2个方面出发,综述了纳米CuO对细胞(细胞膜、细胞生长、凋亡)、生物体(肺、肝、肾)、生态系统的影响,探讨其产生毒性的可能机制,并对其毒性研究的前景进行展望。
Abstract:
-

参考文献/References:

[1]白春礼.纳米科技及其发展前景[J]. 科学通报,2001,46(2):89-92.
[2]Colvin V L. The potential environmental impact of engineered nanomaterials[J]. Nature Biotechnology,2003,21(10):1166-1170.
[3]Rice R F. American chemical society meeting.Nanomaterials show signs of toxicity[J]. Science,2003,300(5617):243.
[4]Dowling A. Nanoscience and nanotechnologies:opportunities and uncertainties[R]. London:The Royal Society & The Royal Academy of Engineering Report,2004:61-64.
[5]Leonard S,Bradford S. Nano technology-life-cycle risk management[J]. Human and Ecological Risk Assessment,2006,12(3):528-551.
[6]Cao Y,Casenas B,Pan W P. Investigation of chemical looping combustion by solid fuels.2. Redox reaction kinetics and product characterization with coal,biomass,and solid waste as solid fuels and CuO as an oxygen carrier[J]. Energy Fuels,2006,20(5):1845-1854.
[7]Zheng S F,Hu J S,Zhong L S,et al. Introducing dual functional CNT networks in to CuO nano microspheres toward superior electrode materials for lithium-ion batteries[J]. Chemistry of Materials,2008,20(11):3617-3622.
[8]Mahapatra O,Bhagat M,Gopalakrishnan C,et al. Ultrafine dispersed CuO nanoparticles and their antibacterial activity[J]. Journal of Experimental Nanoscience,2008,3(3):185-193.
[9]杜建平,薛永强,王志忠.纳米氧化铜的制备新方法及应用[J]. 山西化工,2004,24(3):3-7.
[10]Frietsch M,Zudock F,Goschnick J,et al. CuO catalytic membrane as selectivity trimmer for metal oxide gas sensors[J].Sensors and Actuators B:Chemical,2000,65(1):379-381.
[11]Kim Y S,Hwang I S,Kim S J,et al. CuO nanowire gas sensors for air quality control in automotive cabin[J]. Sensors and Actuators B:Chemical,2008,135 (1):298-303.
[12]Chowdhuri A,Gupta V,Kumar R,et al. Improved response of H2S gas sensors with CuO nanoparticleson SnO2 film[J]. Proceedings of IEEE,2003(1):201-205.
[13]Muiz J,Marbán G,Fuertes A B. Low temperature selective catalytic reduction of NO over modified activated carbon fibres[J]. Applied Catalysis B-Environmental,2000,27 (1):27-36.
[14]崔梅生,杨东,何柱生,等. 氧化铈负载CuO催化材料对甲烷燃烧的催化作用[J]. 中国稀土学报,2004,22(5):605-608.
[15]白守礼,马丽景,闫涛,等. 纳米复合金属氧化物的制备、表征和气敏性质研究[J]. 自然科学进展,2004,14(7):833-836.
[16]Wang Z,Li N,Zhao J,et al. CuO nanoparticle interaction with human epithelial cells:cellular uptake,location,export,and genotoxicity[J]. Chemical Research in Toxicology,2012,25(7):1512-1521.
[17]Simon-Deckers A,Gouget B,Mayne-L′hermite M,et al. In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes[J]. Toxicology,2008,253(1/2/3):137-146.
[18]Herd H L,Malugin A,Ghandehari H. Silica nanoconstruct cellular toleration threshold In vitro[J]. Journal of Controlled Release,2011,153(1):40-48.
[19]Huang M,Khor E,Lim L Y. Uptake and cytotoxicity of chitosan molecules and nanoparticles:effects of molecular weight and degree of deacetylation[J]. Pharmaceutical Research,2004,21(2):344-353.
[20]Kim J S,Yoon T J,Yu K N,et al. Cellular uptake of magnetic nanoparticle is mediated through energy-dependent endocytosis in A549 cells[J]. Journal of Veterinary Science,2006,7(4):321-326.
[21]Moriwaki H,Osborne M R,Phillips D H. Effects of mixing metal ions on oxidative DNA damage mediated by a Fenton-type reduction[J]. Toxicology in Vitro,2008,22(1):36-44.
[22]Deng X Y,Luan Q X,Chen W T,et al. Nanosized zinc oxide particles induce neural stem cell apoptosis[J]. Nanotechnology 2009,20(11):115101.
[23]Xia T,Kovochich M,Liong M,et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties[J]. ACS Nano,2008,2(10):2121-2134.
[24]Masud A,Kuida K,Lakhani S A,et al. Caspases 3 and 7:key mediators of mitochondrial events of apoptosis[J]. Science,2006,311(5762):847-851.
[25]Ram V S,Kumar A K,Kumar C P,et al. Pulmonary toxicity of copper oxide (CuO) nanoparticles in rats[J]. Journal of Medical Science,2013,13(6):571-577.
[26]Lei R,Wu C,Yang B,et al. Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats:a rapid in vivo screening method for nanotoxicity[J]. Toxicology and Applied Pharmacology,2008,232(2):292-301.
[27]金盛杨,王玉军,汪鹏,等. 纳米与微米CuO及Cu2+对土壤脲酶的生态毒性比较研究[J]. 生态毒理学报,2010,5(6):835-841.
[28]Aruoja V,Dubourguier H C,Kasemets K,et al. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata[J]. The Science of the Total Environment,2009,407(4):1461-1468.
[29]Nel A,Xia T,Mdler L,et al. Toxic potential of materials at the nanolevel[J]. Science,2006,311(5761):622-627.
[30]Donaldson K,Stone V,Clouter A,et al. Ultrafine particles[J]. Occupational and Environmental Medicine,2001,58(3):211-216.
[31]Oberdrster G,Oberdrster E,Oberdrster J. Nanotoxicology:an emerging discipline evolving from studies of ultrafine particles[J]. Environmental Health Perspectives,2005,113(7):823-839.
[32]Sharma V,Shukla R K,Saxena N,et al. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells[J]. Toxicology Letters,2009,185(3):211-218.
[33]Eom H J,Choi J. p38 MAPK activation,DNA damage,cell cycle arrest and apoptosis as mechanisms of toxicity of Silver nanoparticles in jurkat T cells[J]. Environmental science & technology,2010,44(21):8337-8342.
[34]Yang H,Liu C,Yang D,et al. Comparative study of cytotoxicity,oxidative stress and genotoxicity induced by four typical nanomaterials:the role of particle size,shape and composition[J]. Journal of Applied Toxicology,2009,29(1):69-78.
[35]Zhang C,Zhu H,Yang X,et al. P53 and p38 MAPK pathways are involved in MONCPT-induced cell cycle G2/M arrest in human non-small cell lung cancer A549[J]. Journal of Cancer Research and Clinical Oncology,2010,136(3):437-445.
[36]Livak K J,Schmittgen T D. Analysis of relative gene expression data using Real-Time quantitative PCR and the 2CT [37]Tubbing D M J,Admiraal W,Cleven R F M J,et al. The contribution of complexed copper to the metabolic inhibition of algae and bacteria in synthetic media and river water[J]. Water Res,1994,28(1):37-44.
[38]Reeves J F,Davies S J,Dodd N J,et al. Hydroxyl radicals (·OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells[J]. Mutat Res,2008,640(1/2):113-122.
[39]Wang Y,Aker W G,Hwang H M,et al. A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human HepG2 cells[J]. The Science of the Total Environment,2011,409(22):4753-4762.

相似文献/References:

[1]王黎曌,薛永来,高璐,等.纳米氧化铜对斑马鱼甲状腺系统的干扰效应[J].江苏农业科学,2019,47(14):202.
 Wang Lizhao,et al.Interference effects of CuO NPs on thyroid system in zebrafish[J].Jiangsu Agricultural Sciences,2019,47(08):202.
[2]黄黎粤,丁竹红,胡忻,等.纳米氧化铜在饱和石英砂柱中的运移研究[J].江苏农业科学,2019,47(19):284.
 Huang Liyue,et al.Transport of nano copper oxide in saturated quartz sand column[J].Jiangsu Agricultural Sciences,2019,47(08):284.

备注/Memo

备注/Memo:
收稿日期:2014-09-02
基金项目:国家自然科学基金(编号:31170386);江苏省高校自然科学基金(编号:11KJB610001);哈尔滨工业大学城市水资源与水环境国家重点实验室开放基金(编号:ESK201201)。
作者简介:付昕(1988—),女,甘肃兰州人,硕士研究生,从事环境毒理学研究。E-mail:hhfuxin@126.com。
通信作者:薛永来,博士,副教授,从事环境毒理学研究。E-mail:xueyonglai@sina.com。
更新日期/Last Update: 2015-08-25