|本期目录/Table of Contents|

[1]张永利,孟晓烨,孙婷梅,等.珠美海棠Mz2NHX1基因的克隆和序列分析[J].江苏农业科学,2015,43(09):20-25.
 Zhang Yongli,et al.Cloning and sequence analysis of Malus zumi Mz2NHX1 gene[J].Jiangsu Agricultural Sciences,2015,43(09):20-25.
点击复制

珠美海棠Mz2NHX1基因的克隆和序列分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第43卷
期数:
2015年09期
页码:
20-25
栏目:
生物技术
出版日期:
2015-09-25

文章信息/Info

Title:
Cloning and sequence analysis of Malus zumi Mz2NHX1 gene
作者:
张永利1 孟晓烨12 孙婷梅1 李爱1 彭立新1
1.天津农学院园艺园林学院,天津 300384; 2.山东省经济林管理站,山东济南 250013
Author(s):
Zhang Yongliet al
关键词:
珠美海棠Mz2NHX1基因克隆生物信息学耐盐机理
Keywords:
-
分类号:
Q785;S685.120.1
DOI:
-
文献标志码:
A
摘要:
以珠美海棠幼苗根系的cDNA为模板,根据珠美海棠NHX1(GQ503257)的保守序列设计引物,通过 RT-PCR 扩增得到目的基因全长1 865 bp,包含1个1 635 bp的开放阅读框,编码544个氨基酸,其核苷酸序列与苹果(GU338395)、玫瑰(KC188664)、杨树(ACU01853)的核苷酸序列同源性分别是95%、93%、91%。其对应的氨基酸序列与拟南芥(AAF21755)、玫瑰(BAD93487.1)和大叶补血草(BAB11940)液泡型Na+/H+逆向转运蛋白的氨基酸序列的同源性分别是79%、87%、79%,说明该蛋白是一种定位于液泡膜的Na+/H+逆向转运蛋白,该基因属于液泡膜Na+/H+逆向转运蛋白基因。它编码的蛋白质分子量为60.5 ku,理论等电点(pI)为8.85,二级结构主要由α-螺旋、β-折叠和不规则卷曲构成,其N-末端具有12个跨膜疏水片段,C-末端具有亲水的长链尾巴,在跨膜片段内含有氨基酸保守序列85-LFFIYLLPPI-94,是Na+/H+逆向转运蛋白抑制剂氨氯吡嗪咪的结合位点。
Abstract:
-

参考文献/References:

[1]Hamada A,Shono M,Xia T,et al. Isolation and characterization of Na+/H+antiporter gene from the halophyte Atriplex gmelini [J]. Plant Molecular Biology,2001,46:35-42
[2]Yeo A R. Molecular biology of salt tolerance in the context of whole-plant physiology[J]. J Exp Bot,1998,49:915-929
[3]Glenn E P,Brown J J,Blumwald E. Salt tolerance and crop potential of halophytes[J]. Crit Rev Plant Sci,1999,18:227-255
[4]Padan E,Venturi M,Gerchan Y,et al. Na+/H+antiporter[J]. Biochim Biophys Acta,2001,1 505(1):144-157
[5]Jia Z P,McCullough N,Martel R,et al. Gene amplification at a locus encoding a putative Na+/H+antiporter confers sodium/lithium tolerance in fission yeast[J]. EMBO J,1992,11:1631-1640
[6]Shi H,Ishitani M,Kim C,et al. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+antiporter[J]. Proc Natl Acad Sci USA,2000,97:6896-6901
[7]Rausch T,Kirsch M,Low R,et al. Salt stress responses of higher plants:the role of proton pumps and Na+/H+-antiporters[J]. Plant Physiol,1996,148:425-433
[8]Apse M P,Aharon G S,Snedden W A,et al. Salt tolerance conferred by overexpression of a vacuolar Na+/H+antiport in Arabidopsis[J]. Science,1999,285(5431):1256-1258.
[9]Fukuda A,Nakamura A,Tanaka Y. Molecular cloning and expression of the Na+/H+exchanger gene in Oryza sativa[J]. Biochimica et Biophysica Acta,1999,1446(1/2):149-155.
[10]Barkla B J,Zinggarelli L,Blumwald E,et al. Topolast Na+/H+antiport activity and its energization by the vacuolar H+-ATPase in the halophytic plant Mesembryanthemum crystallinum L.[J]. Plant Physiol,1995,109:549-556
[11]顾逎良,赵惠祥,马继龙,等. 珠美海棠对盐碱地适应范围及应用[J]. 天津农学院学报,1996,3(3):48-52.
[12]Yamaguchi T,Apse M P,Shi H,et al. Topological analysis of a plant vacuolar Na+/H+antiporter reveals a luminal C terminus that regulates antiporter cation selectivity[J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(21):12510-12515.
[13]石乐义,李美茹,李洪清,等. 植物Na+/H+逆向转运蛋白功能及调控的研究进展[J]. 广西植物,2006,26(6):602-607.
[14]Zhang H X,Blumwald E. Transgenic salt-tolerance tomato plants accumulate salt in foliage but not in fruit[J]. Nat Biotechnol,2001,19:765-768
[15]Apse M P,Blumwald E. Na+transport in plants[J]. FEBS Letters,2007,581(12):2247-2254.
[16]Blumwald E,Aharon G S,Apse M P. Sodium transport in plant cells[J]. Biochimica et Biophysica Acta ,2000,1465(1/2):140-151.
[17]Ohta M,Hayashi Y,Nakashima A,et al. Introduction of a Na+/H+antiporter gene from Atriplex gmelini confers salt tolerance to rice[J]. FEBS Letters,2002,532(3):279-282.
[18]Shi H Z,Lee B H,Wu S,et al. Overexpression of a plasmamembrane Na+/H+antiporter gene improves salt tolerance in Arabidopsis thaliana[J]. Nat Biotechnol;2003,21:81-85
[19]Xue Z Y,Zhi D,Xue G P,et al. Enhanced salt tolerance of transgenic wheat(Tritivum aestivum L.) expressing avacuolar Na+/H+antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+[J]. Plant Sci,2004,167:849-859.
[20]Fukuda A,Nakamura A,Tagiri A,et al. Function,intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice[J]. Plant & Cell Physiology,2004,45(2):146-159.
[21]Zhao F,Wang Z,Zhang Q,et al. Analysis of the physiological mechanism of salt-tolerant transgenic rice carrying a vacuolar Na+/H+antiporter gene from Suaeda salsa[J]. Journal of Plant Research,2006,119(2):95-104.
[22]李金耀,张富春,马纪,等. 植物分子水平的耐盐机制[J]. 植物生理学通讯,2003,39(6):715-719.
[23]吕慧颖,李银心,孔凡江,等. 植物Na+/H+逆向转运蛋白研究进展[J]. 植物学通报,2003,20(3):363-369.
[24]吕慧颖,李银心,陈华,等. 番杏Na+/H+逆向转运蛋白基因的克隆及特性分析[J]. 高技术通讯,2004,14(11):26-31.
[25]郭会敏,顾春笋,刘兆磊,等. 荷花液泡膜型Na+/H+逆向转运蛋白基因NnNHX1的克隆与特性分析[J]. 植物生理学通讯,2010,46(10):1025-1032.
[26]严一诺,孙淑斌,徐国华,等. 菊芋Na+/H+逆向转运蛋白基因的克隆与表达分析[J]. 西北植物学报,2007,27(7):1291-1298.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2014-09-23
基金项目:国家自然科学基金(编号:30671440、31300564)。
作者简介:张永利(1987—)女,河北邯郸人,硕士研究生,主要从事果树生物技术和抗逆生理研究。E-mail:904603613@qq.com。
通信作者:彭立新,博士,教授,主要从事植物逆境生理及分子生物学的教学和科研工作。Tel:(022)23781301;E-mail:penglixin@tjau.edu.cn。
更新日期/Last Update: 2015-09-25