|本期目录/Table of Contents|

[1]公丕贤,幸颖,薛雅蓉,等.海岸盐沼湿地可培养硫酸盐还原菌多样性及其时空变化规律[J].江苏农业科学,2016,44(04):457-462.
 Gong Pixian,et al.Diversity of culturable sulfate-reducing bacteria and their temporal and spatial changes in coastal salt marsh[J].Jiangsu Agricultural Sciences,2016,44(04):457-462.
点击复制

海岸盐沼湿地可培养硫酸盐还原菌多样性
及其时空变化规律
(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第44卷
期数:
2016年04期
页码:
457-462
栏目:
资源与环境
出版日期:
2016-04-25

文章信息/Info

Title:
Diversity of culturable sulfate-reducing bacteria and their temporal and spatial changes in coastal salt marsh
作者:
公丕贤 幸颖 薛雅蓉 刘常宏
南京大学生命科学学院医药生物技术国家重点实验室,江苏南京 210023
Author(s):
Gong Pixianet al
关键词:
盐沼湿地硫酸盐还原菌种群米草互花米草
Keywords:
-
分类号:
Q938.1;S182
DOI:
-
文献标志码:
A
摘要:
为了揭示盐沼湿地生态系统中可培养硫酸盐还原菌(sulfate-reducing bacteria,SRB)的多样性及其时空变化规律,探讨大米草与互花米草定植对SRB多样性及种群数量的影响,采用选择性培养基培养方法及16S rRNA基因序列分析技术,定性、定量分析江苏射阳海岸盐沼湿地可培养SRB的多样性及种群数量。结果共获得210株硫酸盐还原菌,归属于变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)、放线菌门(Actinobacteria)的17个属,其中假单胞菌属(Pseudomonas)为优势类群;发现了一些未见报道的新SRB种属,如Agromyces、Brachybacterium、Oceanimonas、Microbulbifer、Photobacterium、Sporosarcina和Tetrathiobacter等;盐沼湿地可培养SRB多样性及种群数量受季节变化而改变;定植米草直接或通过改变土壤性质而间接影响盐沼湿地可培养SRB多样性及种群数量。SRB是盐沼生态系统的重要组成部分,其种群多样性、数量及分布受生物、非生物因素的影响。
Abstract:
-

参考文献/References:

[1]Castro H F,Williams N H,Ogram A. Phylogeny of sulfate-reducing bacteria1[J]. FEMS Microbiology Ecology,2000,31(1):1-9.
[2]Holmer M,Storkholm P.Sulphate reduction and sulphur cycling in lake sediments :a review[J].Freshwater Biology,2001,46(4):431-451.
[3]陈效,孙立苹,徐盈,等. 硫酸盐还原菌的分离和生理特性研究[J]. 环境科学与技术,2006,29(9):38-40.
[4]陈涛,曹毅,伊芬芬,等. 一株耐酸硫酸盐还原菌的分离筛选及生理特性研究[J]. 四川大学学报:自然科学版,2006,43(2):451-457.
[5]李新荣,沈德中. 硫酸盐还原菌的生态特性及其应用[J]. 应用与环境生物学报,1999(增刊1):10-13.
[6]吕琴,陈中云,闵航. 重金属污染对水稻田土壤硫酸盐还原菌种群数量及其活性的影响[J]. 植物营养与肥料学报,2005,11(3):399-405.
[7]孙翠霞,弓爱君,邱丽娜,等. 硫酸盐还原菌对环境的影响及其应用[J]. 腐蚀科学与防护技术,2006,18(3):196-198.
[8]Klepac-Ceraj V,Bahr M,Crump B C,et al. High overall diversity and dominance of microdiverse relationships in salt marsh sulphate-reducing bacteria[J]. Environmental Microbiology,2004,6(7):686-698.
[9]Teske A,Dhillon A,Sogin M L. Genomic markers of ancient anaerobic microbial pathways:sulfate reduction,methanogenesis,and methane oxidation[J]. The Biological Bulletin,2003,204(2):186-191.
[10]Widdel F,Bak F. Gram-negative mesophilic sulfate-reducing bacteria[M]//Balows A,Truper H G,Dworkin M,et al. The Prokaryotes. New York:Springer,1992:3352-3378.
[11]So C M,Young L Y. Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes[J]. Applied and Environmental Microbiology,1999,65(7):2969-2976.
[12]Hines M E,Evans R S,Genthner B R,et al. Molecular phylogenetic and biogeochemical studies of sulfate-reducing bacteria in the rhizosphere of Spartina alterniflora[J]. Applied and Environmental Microbiology,1999,65(5):2209-2216.
[13]Sigalevich P,Meshorer E,Helman Y,et al. Transition from anaerobic to aerobic growth conditions for the sulfate-reducing bacterium Desulfovibrio oxyclinae results in flocculation[J]. Applied and Environmental Microbiology,2000,66(11):5005-5012.
[14]沈永明,刘咏梅,陈全站. 江苏沿海互花米草(Spartina alterniflora Loisel)盐沼扩展过程的遥感分析[J]. 植物资源与环境学报,2002,11(2):33-38.
[15]刘光崧. 中国生态系统研究网络观测与分析标准方法[M]. 北京:中国标准出版社,1996.
[16]邱勋鹏,黄承玲,鄢建平. 间接光度法测定水和废水中硫酸盐[J]. 理化检验:化学分册,2003,39(12):711-712.
[17]孙智敏,张德强,孙汉文. 火焰原子吸收光谱法间接测定水中硫酸盐[J]. 理化检验:化学分册,2005,41(8):573-574.
[18]徐晓宇,闵航,刘和,等. 土壤微生物总DNA提取方法的比较[J]. 农业生物技术学报,2005,13(3):36.
[19]Blazejak A,Erséus C,Amann R,et al. Coexistence of bacterial sulfide oxidizers,sulfate reducers,and spirochetes in a gutless worm (Oligochaeta) from the Peru margin[J]. Applied and Environmental Microbiology,2005,71(3):1553-1561.
[20]Asaulenko L H,Abdulina D R,Purish L M. Taxonomic position of certain representatives of sulphate-reducing corrosive microbial community[J]. Mikrobiolohichnyǐ Zhurnal,2010,72(4):3-10.
[21]Nazina T N,Grigorian A A,Sue K F,et al. Phylogenetic diversity of aerobic saprotrophic bacteria isolated from the Daqing oil field[J]. Microbiology,2002,71(1):103-110.
[22]Zhou J M,Song Z Y,Yan D J,et al. Performance of a haloalkaliphilic bioreactor under different NO-3/SO2-4 ratios[J]. Bioresource Technology,2014,153(2):216-222.
[23]Vogel H,Bruschi M,Le Gall J. Phylogenetic studies of two rubredoxins from sulfate reducing bacteria[J]. Journal of Molecular Evolution,1977,9(2):111-119.
[24]Chen C,Ren N,Wang A,et al. Microbial community of granules in expanded granular sludge bed reactor for simultaneous biological removal of sulfate,nitrate and lactate[J]. Applied Microbiology and Biotechnology,2008,79(6):1071-1077.
[25]Kopriva S,Büchert T,Fritz G,et al. The presence of an iron-sulfur cluster in adenosine 5′-phosphosulfate reductase separates organisms utilizing adenosine 5′-phosphosulfate and phosphoadenosine 5′-phosphosulfate for sulfate assimilation[J]. The Journal of Biological Chemistry,2002,277(24):21786-21791.
[26]Medihala P G,Lawrence J R,Swerhone G D,et al. Effect of pumping on the spatio-temporal distribution of microbial communities in a water well field[J]. Water Research,2012,46(4):1286-1300.
[27]Koronelli T V,Komarova T I,Porshneva O V,et al. Extracellular metabolites of hydrocarbon-oxidizing bacteria as a substrate for sulfate reduction[J]. Prikladnaia Biokhimiia i Mikrobiologiia,2001,37(5):549-553.
[28]房琳. 砂岩型铀矿不同矿带中可培养硫酸盐还原菌类群及其分布[D]. 西安:西北大学,2009.
[29]Jackson K L,Whitcraft C R,Dillon J G. Diversity of desulfobacteriaceae and overall activity of sulfate-reducing microorganisms in and around a salt pan in a southern California coastal wetland[J]. Wetlands,2014,34(5):969-977.
[30]张小里,刘海洪,陈开勋,等. 硫酸盐还原菌生长规律的研究[J]. 西北大学学报:自然科学版,1999,29(5):397-402.
[31]Ravcheev D A,Thiele I. Systematic genomic analysis reveals the complementary aerobic and anaerobic respiration capacities of the human gut microbiota[J]. Frontiers in Microbiology,2014,5:674.
[32]Larsson J T,Rogstam A,Von Wachenfeldt C. Coordinated patterns of cytochrome bd and lactate dehydrogenase expression in Bacillus subtilis[J]. Microbiology,2005,151(10):3323-3335.
[33]Cooper M,Tavankar G R,Williams H D. Regulation of expression of the cyanide-insensitive terminal oxidase in Pseudomonas aeruginosa[J]. Microbiology,2003,149(5):1275-1284.
[34]Lopez O,Morera C,Miranda-Rios J,et al. Regulation of gene expression in response to oxygen in Rhizobium etli:role of FnrN in fixNOQP expression and in symbiotic nitrogen fixation[J]. Journal of Bacteriology,2001,183(24):6999-7006.
[35]Otten M F,Stork D M,Reijnders W N,et al. Regulation of expression of terminal oxidases in Paracoccus denitrificans[J]. European Journal of Biochemistry/FEBS,2001,268(8):2486-2497.
[36]Roh J H,Kaplan S. Interdependent expression of the ccoNOQP-rdxBHIS loci in Rhodobacter sphaeroides 2.4.1[J]. Journal of Bacteriology,2002,184(19):5330-5338.
[37]Edgcomb V P,Mcdonald J H,Devereux R,et al. Estimation of bacterial cell numbers in humic acid-rich salt marsh sediments with probes directed to 16S ribosomal DNA[J]. Applied and Environmental Microbiology,1999,65(4):1516-1523.
[38]Nie M,Wang M,Li B. Effects of salt marsh invasion by Spartina alterniflora on sulfate-reducing bacteria in the Yangtze River estuary,China[J]. Ecological Engineering,2009,35(12):1804-1808.
[39]Wang M,Chen J K,Li B. Characterization of bacterial community structure and diversity in rhizosphere soils of three plants in rapidly changing salt marshes using 16S rDNA[J]. Pedosphere,2007,17(5):545-556.
[40]Vallero M V G,Lettinga G,Lens P N L. High rate sulfate reduction in a submerged anaerobic membrane bioreactor (SAMBaR) at high salinity[J]. Journal of Membrane Science,2005,253(1):217-232.
[41]Wardle D A,Bardgett R D,Klironomos J N,et al. Ecological linkages between aboveground and belowground biota[J]. Science,2004,304(5677):1629-1633.
[42]Kourtev P S,Ehrenfeld J G,Hggblom M. Exotic plant species alter themicrobial community structure and function in the soil[J]. Ecology,2002,83(11):3152-3166.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2015-03-09
基金项目:国家自然科学基金(编号:31272081、31471810);高等学校博士学科点专项科研基金(编号:20130091110036);江苏省科技支撑计划(编号:BE2012372)。
作者简介:公丕贤(1990—),男,山东临沂人,硕士研究生,主要从事农业微生物研究。E-mail:kingpeter@126.com。
通信作者:刘常宏,博士,博士生导师,主要从事农业微生物研究。E-mail:chliu@nju.edu.cn。
更新日期/Last Update: 2016-04-25