|本期目录/Table of Contents|

[1]李晶,谢成建,玉永雄,等.植物耐铝机制研究进展[J].江苏农业科学,2016,44(12):16-21.
 Li Jing,et al.Research progress on mechanism of aluminum tolerance in plants[J].Jiangsu Agricultural Sciences,2016,44(12):16-21.
点击复制

植物耐铝机制研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第44卷
期数:
2016年12期
页码:
16-21
栏目:
专论
出版日期:
2016-12-25

文章信息/Info

Title:
Research progress on mechanism of aluminum tolerance in plants
作者:
李晶1谢成建1玉永雄2杨星勇1
1. 重庆师范大学生命科学学院/重庆市植物逆境分子生物学重点实验室,重庆 401331;
2. 西南大学动物科技学院/重庆市牧草与草食家畜重点实验室,重庆 400716
Author(s):
Li Jinget al
关键词:
铝毒外部排斥机制内部忍耐机制耐铝基因
Keywords:
-
分类号:
Q945.78
DOI:
-
文献标志码:
A
摘要:
在酸性土壤中,植物会受到铝的毒害,从而严重影响植物的生长发育;而一些物种能耐受铝的毒害,使其在酸性土壤中正常生长。大量研究表明,植物生理水平的耐铝机制包括外部排斥机制和内部耐受机制2个方面:外部机制主要包括细胞分泌有机酸对Al1,2,33+螯合、提高根际周围pH值、降低根尖细胞壁的果胶含量等;内部机制主要是产生的有机酸与进入细胞内的Al1,2,33+螯合和细胞内部将Al1,2,33+区隔化,同时抗氧化代谢过程和激素信号转导过程也发挥着重要的作用。在分子水平上主要发现了与有机酸分泌相关的基因以及与内部忍受机制相关的耐铝基因,调控相关耐铝基因的转录因子也相继被报道。本文对植物所涉及的各种耐铝机制进行了综述,以期为培育耐铝植物提供理论基础。
Abstract:
-

参考文献/References:

[1]李交昆,唐璐璐. 植物抗铝分子机制研究进展[J]. 生命科学,2013,25(6):588-593.
[2]黄邦全,白景华,薛小桥. 植物铝毒害及遗传育种研究进展[J]. 植物学通报,2001,18(4):385-395.
[3]潘小东. 紫花苜蓿耐铝毒突变体筛选的研究[D]. 重庆:西南农业大学,2005:1-2.
[4]雷宏军,朱端卫,刘鑫,等. 施用石灰对酸性土壤上蚕豆生长的影响[J]. 华中农业大学学报,2003,22(1):35-39.
[5]Ryan P R,Ditomaso J M,kochian L V.Aluminum toxicity in roots:an investigation of spatial sensitivity and the role of the root cap[J]. Journal of Experimental Botany,1993,44(2):437-446.
[6]Yin L,Wang S,Eltayeb A E,et al. Overexpression of dehydroascorbate reductase,but not monodehydroascorbate reductase,confers tolerance to aluminum stress in transgenic tobacco[J]. Planta,2010,231(3):609-621.
[7]Yamamoto Y,Kobayashi Y,Devi S R,et al. Oxidative stress triggered by aluminum in plant roots[J]. Plant and Soil,2003,255(1):239-243.
[8]Jones D L,Blancaflor E B,Kochian L V,et al. Spatial coordination of aluminium uptake,production of reactive oxygen species,callose production and wall rigidification in maize roots[J]. Plant Cell and Environment,2006,29(7):1309-1318.
[9]Yamamoto Y,Kobayashi Y,Devi S R,et al. Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells[J]. Plant Physiology,2002,128(1):63-72.
[10]Sivaguru M,Horst W J.The distal part of the transition zone is the most aluminum-sensitive apical root zone of maize[J]. Plant Physiology,1998,116(1):155-163.
[11]Brunner I,Sperisen C.Aluminum exclusion and aluminum tolerance in woody plants[J]. Frontiers in Plant Science,2013,4(1):172.
[12]Delhaize E,Craig S,Beaton C D,et al. Aluminum tolerance in wheat (Triticum aestivum L.) Ⅰ. Uptake and distribution of aluminum in root apices[J]. Plant Physiology,1993,103(3):685-693.
[13]Pellet D M,Grunes D L,kochian L V. Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.)[J]. Planta,1995,196(4):788-795.
[14]Shen H,He L F,Sasaki T,et al. Citrate secretion coupled with the modulation of soybean root tip under aluminum stress. Up-regulation of transcription,translation,and threonine-oriented phosphorylation of plasma membrane H1,2,3+-ATPase[J]. Plant Physiology,2005,138(1):287-296.
[15]Li X F,Zuo F H,Ling G Z,et al. Secretion of citrate from roots in response to aluminum and low phosphorus stresses in Stylosanthes[J]. Plant and Soil,2009,325(1):219-229.
[16]Zheng S J,Ma J F,Matsumoto H.High aluminum resistance in buckwheat:Al-induced special secretion of oxalic acid from root tips[J]. Plant Physiology,1998,117(3):745 - 751.
[17]Yang J L,Zheng S J,He Y F,et al. Aluminum resistance requires resistance to acid stress:a case study with spinach that exudes oxalate rapidly when exposed to Al stress[J]. Journal of Experimental Botany,2005,56(414):1197-1203.
[18]Sasaki T,Ymamoto Y,Ezaki B,et al. A wheat gene encoding an aluminum-activated malate transporter[J]. The Plant Journal,2004,37(5):645-653.
[19]Tian Q Y,Zhang X X,Ramesh S A,et al. Ethylene negatively regulates aluminium-induced malate efflux from wheat roots and tobacco cells transformed with TaALMT1[J]. Journal of Experimental Botany,2014,65(9):2415-2426.
[20]Horst W J,Wagner A,Marschner H.Mucilage protects root meristems from aluminium injury[J]. Z Pflanzenphysiol,1982,105:435-444.
[21]Watanabe T,Misawa S,Hiradate S,et al. Root mucilage enhances aluminum accumulation in Melastoma malabathricum,an aluminum accumulator[J]. Plant Signaling & Behavior,2008,3(8):603-605.
[22]Silva G E A,Ramos F T,Faria A P,et al. Seeds physicochemical traits and mucilage protection against aluminum effect during germination and root elongation as important factors in a biofuel seed crop (Ricinus communis)[J]. Environmental Science & Pollution Research,2014,21(19):11572-11579.
[23]Degenhardt J,Larsen P B,Howell S H,et al. Aluminum resistance in the Arabidopsis mutant alr-104 is caused by an aluminum-induced increase in rhizosphere pH[J]. Plant Physiology,1998(1),117:19-27.
[24]Pellet D M,Papernik L A,Jones D L,et al. Involvement of multiple aluminium exclusion mechanisms in aluminium tolerance in wheat[J]. Plant and Soil,1997,192(1):63-68.
[25]Horst W J,Wang Y X,Eticha D.The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants:a review[J]. Annals of Botany,2010,106(1):185-197.
[26]Tabuchi A,Matsumoto H.Changes in cell-wall properties of wheat (Triticum aestivum) roots during aluminum-induced growth inhibition[J]. Physiologia Plantarum,2001,112(3):353-358.
[27]Eticha D,Stass A,Horst W J,et al. Cell-wall pectin and its degree of methylation in the maize root-apex:significance for genotypic differences in aluminium resistance[J]. Plant Cell Environment,2005,28(11):1410-1420.
[28]Yang J L,Li Y Y,Zhang Y J,et al. Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex[J]. Plant Physiology,2008,146(2):602-611.
[29]Rangel A F,Rao I M,Horst W J.Intracellular distribution and binding state of aluminium in root apices of two common bean(Phaseolus vulgaris) genotypes in relation to Al toxicity[J]. Physiologia Plantarum,2009,135(2):162-173.
[30]Zhang Z Y,Wang H H,Wang X M,et al. Nitric oxide enhances aluminum tolerance by affecting cell wall polysaccharides in rice roots[J]. Plant Cell Reports,2011,30(9):1701-1711.
[31]Maejima E,Watanabe T,Osaki M,et al. Phosphorus deficiency enhances aluminum tolerance of rice (Oryza sativa) by changing the physicochemical characteristics of root plasma membranes and cell walls[J]. Journal of Plant Physiology,2014,171(2):9-15.
[32]Maejima E,Watanabe T.Proportion of phospholipids in the plasma membrane is an important factor in Al tolerance[J]. Plant Signaling & Behavior,2014,9(7).
[33]Wagatsuma T,Khan M S,Watanabe T,et al. Higher sterol content regulated by CYP51 with concomitant lower phospholipid contents in membranes is a common strategy for aluminium tolerance in several plant species[J]. Journal of Experimental Botany,2015,66(3):907-918.
[34]Morita A,Yanagisawa O,Maeda S,et al. Mechanism for the detoxification of aluminum in roots of tea plant(Camellia sinensis(L.) Kuntze )[J]. Phytochemistry,2008,69(1):147-153.
[35]Watanabe T,Osaki M.Influence of aluminum and phosphorus on growth and xylem sap composition in Melastoma malabathricum L[J]. Plant and Soil,2001,237(1):63-70.
[36]Jansen S,Broadley M R,Robbrecht E,et al. Aluminum hyperaccumulation in angiosperms:a review of its phylogenetic significance[J]. The Botanical Review,2002,68(2):235-269.
[37]Ma J F,Ryan P R,Delhaize E.Aluminium tolerance in plants and the complexing role of organic acids[J]. Trends in Plant Science,2001,6(6):273-278.
[38]Blancheteau C I,Rengel Z,Alberdi M,et al. Molecular and physiological strategies to increase aluminum resistence in plants[J]. Molecular Biology Reports,2012,39(3):2069-2079.
[39]Sharma P,Dubey R S. Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum[J]. Plant Cell Reports,2007,26(11):2027-2038.
[40]Dai H,Cao F,Chen X,et al. Comparative proteomic analysis of aluminum tolerance in tibetan wild and cultivated barleys[J]. PLoS One,2013,8(5):e63428.
[41]He H,He L,Gu M.Interactions between nitric oxide and plant hormones in aluminum tolerance[J]. Plant Signaling & Behavior,2012,7(4):469 -471.
[42]Hoekenga O A,Maron L G,Pineros M,et al. AtALMT1,which encodes a malate transporter is indentified as one of several genes critical for aluminum tolerance in Arabidopsis[J]. Proceedings of the National Academy of Sciences,2006,103(25):9738 -9743.
[43]Ligaba A,Katsuhara M,Ryan P R,et al. The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resisitence of plant cells[J]. Plant Physiology,2006,142(3):1294-1303.
[44]Fontecha G,Silva-Navas J,Benito C,et al. Candidate gene identification of an aluminum-activated organic acid transporter gene at the Alt4 locus for aluminum tolerance in rye (Secale cereale L.)[J]. Theoretical and Applied Genetics,2007,114(2):249-260.
[45]Zhou G F,Pereira J P,Delhaize E,et al. Enhancing the aluminum tolerance of barley by expressing the citrate transporter genes SbMATE and FRD3[J]. Journal of Experimental Botany,2014,65(9):2381-2390.
[46]Furukawa J,Yamaji N,Wang H,et al. An aluminum-activated citrate transporter in barley[J]. Plant Cell Physiology,2007,48(8):1081-1091.
[47]Liu J,Magalhaes J V,Shaff J,et al. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance[J]. The Plant Journal,2009,57(3):389-399.
[48]Matonyei T K,Cheprot R K,Liu J,et al. Physiological and molecular analysis of aluminum tolerance in selected Kenyan maize lines[J]. Plant and Soil,2014,377(1/2):357-367.
[49]Tovkach A,Ryan P R,Richardson A E,et al. Transposon-mediated alteration of TaMATE1B expression in wheat confers constitutive citrate efflux from root apices[J]. Plant Physiology,2013,161(2):880-892.
[50]Yang X Y,Yang J L,Zhou Y,et al. A de novo synthesis citrate transporter,Vigna umbellata multidrug and toxic compound extrusion,implicates in Al-activated citrate efflux in rice bean (Vigna umbellata) root apex[J]. Plant Cell and Environment,2011,34(2):2138-2148.
[51]Yokosho K,Yamaji N,Ma J F,et al. An Al-inducible MATE gene is involved in external detoxification of Al in rice[J]. The Plant Journal,2011,68(6):1061-1069.
[52]Han Y Y,Zhang W Z,Zhang B L,et al. One novel mitochondrial citrate synthase from Oryza sativa L. can enhance aluminum tolerance in transgenic tobacco[J]. Molecular Biotechnology,2009,42(3):299-305.
[53]Huang C F,Yamaji N,Mitani N,et al. A bacterial-type ABC transporter is involved in aluminum tolerance in rice[J]. Plant Cell,2009,21(2):655-667.
[54]Larsen P B,Cancel J,Rounds M,et al. Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment[J]. Planta,2007,225(6):1447-1458.
[55]Yamaji N,Huang C F,Nagao S,et al. A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice[J]. Plant Cell,2009,21(10):3339-3349.
[56]Huang C F,Yamaji N,Chen Z,et al. A tonoplast-localized half-size ABC transporter is required for internal detoxification of aluminum in rice[J]. The Plant Journal,2012,69(5):857-867.
[57]Xia J X,Yamaji N,Kasai T,et al. Plasma membrane-localized transporter for aluminum in rice[J]. Proceedings of the National Academy of Sciences,2010,107(43):18381 -18385.
[58]Li J Y,Liu J P,Dong D K,et al. Natural variation underlies alterations in Nramp aluminum transporter(NRAT1) expression and function that play a key role in rice aluminum tolerance[J]. Proceedings of the National Academy of Sciences,2014,111(17):6503-6508.
[59]Ma J F,Chen Z C,Shen R F.Molecular mechanisms of Al tolerance in gramineous plants[J]. Plant and Soil,2014,381(1):1-12.
[60]Arenhart R A,Bai Y,de Oliveira L F.New insights into aluminum tolerance in rice:the ASR5 protein binds the STAR1 promoter and other aluminum-responsive genes[J]. Molecular plant,2014,7(4):709-721.
[61]Yang Q S,Wang Y Q,Zhang J J,et al. Identification of aluminum responsive proteins in rice roots by a proteomic a pproach:cysteine synthasea sakey player in Al response[J]. Proteomics,2007,7:737-749.
[62]Wang Z Q,Xu X Y,Gong Q Q,et al. Root proteome of rice studied by iTRAQ provides integrated insight into aluminum stress tolerance mechanisms in plants[J]. Journal of Proteomics,2014,98:189-205.

相似文献/References:

[1]艾佐佐,袁军,黄丽媛,等.磷对铝胁迫下油茶幼苗根冠比及根系形态的影响[J].江苏农业科学,2017,45(12):106.
 Ai Zuozuo,et al.Effects of phosphorus on root/shoot ratio and root morphology of Camellia oleifera seedlings under aluminum toxicity[J].Jiangsu Agricultural Sciences,2017,45(12):106.

备注/Memo

备注/Memo:
收稿日期:2015-09-22
基金项目:国家重点基础研究发展规划 (编号:2014CB138701)。
作者简介:李晶(1991—),女,陕西汉中人,硕士研究生,主要从事苜蓿逆境生理研究。 E-mail:809529670@qq.com。
通信作者:谢成建,博士,副教授,主要从事植物与微生物互作方面的研究。E-mail:xcj614@163.com。
更新日期/Last Update: 2016-12-25