|本期目录/Table of Contents|

[1]蔡红红,黄凯,宋由页,等.全球变化下的重金属污染与外来植物入侵[J].江苏农业科学,2016,44(12):49-53.
 Cai Honghong,et al.Relationship between heavy metal pollution and alien plant invasion under global changes:a review[J].Jiangsu Agricultural Sciences,2016,44(12):49-53.
点击复制

全球变化下的重金属污染与外来植物入侵(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第44卷
期数:
2016年12期
页码:
49-53
栏目:
专论
出版日期:
2016-12-25

文章信息/Info

Title:
Relationship between heavy metal pollution and alien plant invasion under global changes:a review
作者:
蔡红红1黄凯1宋由页1祁珊珊1戴志聪123杜道林12
1.江苏大学环境与安全工程学院环境生态研究所,江苏镇江 212013;
2.江苏大学现代农业装备与技术省部共建教育部重点实验室,江苏镇江 212013; 3.江苏大学京江学院,江苏镇江 212013
Author(s):
Cai Honghonget al
关键词:
全球变化复合污染外来植物入侵重金属污染元素防御
Keywords:
-
分类号:
X171.5
DOI:
-
文献标志码:
A
摘要:
最近十几年来,全球变化一直是生态学研究的热点。而关于外来植物入侵与其他全球变化因子交互关系的研究,主要集中在气候变暖及氮沉降对外来植物入侵力的影响。结合重金属污染和外来植物入侵这2个重要的全球变化因子,从植物对重金属的高耐受、富集及相应解毒与生物抗性可能对外来植物成功入侵的机制进行初步讨论。旨在探讨化学污染和植物入侵之间的相互关系,以期为全球变化背景下的入侵生态学的研究提供新的研究思路。
Abstract:
-

参考文献/References:

[1]Darrouzet-Nardi A,Reed S C,Grote E E,et al. Observations of net soil exchange of CO2 in a dryland show experimental warming increases carbon losses in biocrust soils[J]. Biogeochemistry,2015,126(3):363-378.
[2]Basto S,Thompson K,Phoenix G,et al. Long-term nitrogen deposition depletes grassland seed banks[J]. Nature Communication,2015,6:6185.
[3]Genovesi P,Carboneras C,Vilà M,et al. EU adopts innovative legislation on invasive species:A step towards a global response to biological invasions?[J]. Biological Invasions,2015,17(5):1307-1311.
[4]Suk W A,Ahanchian H,Asante K A,et al. Environmental pollution:An under-recognized threat to childrens health,especially in low and middle-income countries[J]. Environmental Health Perspectives,2016,124(3):A41-45.
[5]Miao L,Moore J C,Zeng F,et al. Footprint of research in desertification management in China[J]. Land Degradation & Development,2015,26(5):450-457.
[6]Lu M,Zhou X,Yang Q,et al. Responses of ecosystem carbon cycle to experimental warming:a meta-analysis[J]. Ecology,2013,94(3):726-738.
[7]Smith S D,Huxman T E,Zitzer S F,et al. Elevated CO2 increases productivity and invasive species success in an arid ecosystem[J]. Nature,2000,408(6808):79-82.
[8]Seebens H,Essl F,Dawson W,et al. Global trade will accelerate plant invasions in emerging economies under climate change[J]. Global Change Biology,2015,21(11):4128-4140.
[9]Sandel B,Dangremond E M. Climate change and the invasion of California by grasses[J]. Global Change Biology,2012,18(1):277-289.
[10]Wang A,Jiang X X,Zhang Q Q,et al. Nitrogen addition increases intraspecific competition in the invasive wetland plant Alternanthera philoxeroides,but not in its native congener Alternanthera sessilis[J]. Plant Species Biology,2015,30(3):176-183.
[11]Li H L,Ning L,Alpert P,et al. Responses to simulated nitrogen deposition in invasive and native or non-invasive clonal plants in China[J]. Plant Ecology,2014,215(12):1483-1492.
[12]Lin W,Zhou G,Cheng X,et al. Fast economic development accelerates biological invasions in China[J]. PLoS One,2007,2(11):e1208.
[13]Bradley B A,Blumenthal D M,Wilcove D S,et al. Predicting plant invasions in an era of global change[J]. Trends in Ecology & Evolution,2010,25(5):310-318.
[14]Hulme P E,Pyek P,Jaroík V,et al. Bias and error in understanding plant invasion impacts[J]. Trends in Ecology & Evolution,2013,28(4):212-218.
[15]贺俊英,王志新,哈斯巴根. 基于外来入侵植物光梗蒺藜草的发生分布特点的潜在入侵生境分析[J]. 杂草科学,2014,32(1):75-77.
[16]Bai F,Chisholm R,Sang W,et al. Spatial risk assessment of alien invasive plants in China[J]. Environmental Science & Technology,2013,47(14):7624-7632.
[17]安瑞军,王永忠,田迅. 外来入侵植物——少花蒺藜草研究进展[J]. 杂草科学,2015,33(1):27-31.
[18]Qi S S,Dai Z C,Zhai D L,et al. Curvilinear effects of invasive plants on plant diversity:Plant community invaded by Sphagneticola trilobata[J]. PLoS One,2014,9(11):e113964.
[19]李明,翟喜海,宋伟丰,等. 外来入侵植物三裂叶豚草的研究进展[J]. 杂草科学,2014,32(2):33-37.
[20]Powell K I,Chase J M,Knight T M. A synthesis of plant invasion effects on biodiversity across spatial scales[J]. American Journal of Botany,2011,98(3):539-548.
[21]le Maitre D C. Predicting invasive species impacts on hydrological processes:the consequences of plant physiology for landscape processes[J]. Weed Technology,2004,18(Sp1):1408-1410.
[22]Ehrenfeld J G. Effects of exotic plant invasions on soil nutrient cycling processes[J]. Ecosystems,2003,6(6):503-523.
[23]Ehrenfeld J G. Ecosystem consequences of biological invasions[J]. Annual Review of Ecology Evolution and Systematics,2010,41:59-80.
[24]Brooks M L,Dantonio C M,Richardson D M,et al. Effects of invasive alien plants on fire regimes[J]. Bioscience,2004,54(7):677-688.
[25]Pyek P,Richardson D M. Invasive species,environmental change and management,and health[J]. Annual Review of Environment and Resources,2010,35:25-55.
[26]Wardle D A,Bardgett R D,Callaway R M,et al. Terrestrial ecosystem responses to species gains and losses[J]. Science,2011,332(6035):1273-1277.
[27]Dai Z C,Qi S S,Miao S L,et al. Isolation of NBS-LRR RGAs from invasive Wedelia trilobata and the calculation of evolutionary rates to understand bioinvasion from a molecular evolution perspective[J]. Biochemical Systematics and Ecology,2015,61:19-27.
[28]Dai Z C,Fu W,Qi S S,et al. Different rresponses of an invasive clonal plant Wedelia trilobata and its native congener to gibberellin:implications for biological invasion[J]. Journal of Chemical Ecology,2016,42(2):85-94.
[29]Ha H,Olson J R,Bian L,et al. Analysis of heavy metal sources in soil using kriging interpolation on principal components[J]. Environmental Science & Technology,2014,48(9):4999-5007.
[30]Zhao F J,Ma Y,Zhu Y G,et al. Soil contamination in China:current status and mitigation strategies[J]. Environmental Science & Technology,2014,49(2):750-759.
[31]环境保护部,国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业,2014(5):10-11.
[32]Korzeniowska J,Stanislawska-Glubiak E. Phytoremediation potential of Miscanthus× giganteus and Spartina pectinata in soil contaminated with heavy metals[J]. Environmental Science and Pollution Research,2015,22(15):11648-11657.
[33]Pagliano C,Raviolo M,Dalla Vecchia F,et al. Evidence for PSⅡ donor-side damage and photoinhibition induced by cadmium treatment on rice(Oryza sativa L.)[J]. Journal of Photochemistry and Photobiology B-Biology,2006,84(1):70-78.
[34]La Rocca N,Andreoli C,Giacometti G,et al. Responses of the Antarctic microalga Koliella antarctica (Trebouxiophyceae,Chlorophyta) to cadmium contamination[J]. Photosynthetica,2009,47(3):471-479.
[35]Schieber M,Chandel N S. ROS function in redox signaling and oxidative stress[J]. Current Biology,2014,24(10):R453-R462.
[36]Chen L,Luo S,Li X,et al. Interaction of Cd-hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake[J]. Soil Biology & Biochemistry,2013,68(2014):300-308.
[37]Wang X,Ma L Q,Rathinasabapathi B,et al. Mechanisms of efficient arsenite uptake by arsenic hyperaccumulator Pteris vittata[J]. Environmental Science & Technology,2011,45(22):9719-9725.
[38]Assuno A G,Herrero E,Lin Y F,et al. Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(22):10296-10301.
[39]Assuno A,Martins P,De Folter S,et al. Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens[J]. Plant Cell and Environment,2001,24(2):217-226.
[40]Weber M,Harada E,Vess C,et al. Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase,a ZIP transporter and other genes as potential metal hyperaccumulation factors[J]. The Plant Journal,2004,37(2):269-281.
[41]Ali H,Khan E,Sajad M A. Phytoremediation of heavy metals-concepts and applications[J]. Chemosphere,2013,91(7):869-881.
[42]Zhao F J,Hamon R E,Lombi E,et al. Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens[J]. Journal of Experimental Botany,2002,53(368):535-543.
[43]Lombi E,Zhao F,Mcgrath S,et al. Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype[J]. New Phytologist,2001,149(1):53-60.
[44]Caille N,Zhao F,Mcgrath S. Comparison of root absorption,translocation and tolerance of arsenic in the hyperaccumulator Pteris vittata and the nonhyperaccumulator Pteris tremula[J]. New Phytologist,2005,165(3):755-761.
[45]Meharg A A,Hartley-Whitaker J. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species[J]. New Phytologist,2002,154(1):29-43.
[46]Gonzaga M I S,Ma L Q,Santos J A G,et al. Rhizosphere characteristics of two arsenic hyperaccumulating Pteris ferns[J]. Science of the Total Environment,2009,407(16):4711-4716.
[47]Axelsen K B,Paimgren M G. Inventory of the superfamily of P-type ion pumps in Arabidopsis[J]. Plant Physiology,2001,126(2):696-706.
[48]Papoyan A,Kochian L V. Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase[J]. Plant Physiology,2004,136(3):3814-3823.
[49]Rascio N,Navari Izzo F. Heavy metal hyperaccumulating plants:how and why do they do it? And what makes them so interesting?[J]. Plant Science,2011,180(2):169-181.
[50]Callahan D L,Baker A J M,Kolev S D,et al. Metal ion ligands in hyperaccumulating plants[J]. Journal of Biological Inorganic Chemistry,2006,11(1):2-12.
[51]Manara A. Plant responses to heavy metal toxicity[M]// Plants and heavy metals. Netherlands:Springer,2012:27-53.
[52]Frey B,Keller C,Zierold K. Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens[J]. Plant Cell and Environment,2000,23(7):675-687.
[53]Broadhurst C L,Chaney R L,Angle J S,et al. Nickel localization and response to increasing Ni soil levels in leaves of the Ni hyperaccumulator Alyssum murale[J]. Plant Soil,2004,265(1/2):225-242.
[54]Cosio C,Desantis L,Frey B,et al. Distribution of cadmium in leaves of Thlaspi caerulescens[J]. Journal of Experimental Botany,2005,56(412):765-775.
[55]Schat H,Llugany M,Vooijs R,et al. The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes[J]. Journal of Experimental Botany,2002,53(379):2381-2392.
[56]Raab A,Feldmann J,Meharg A A. The nature of arsenic-phytochelatin complexes in Holcus lanatus and Pteris cretica[J]. Plant Physiology,2004,134(3):1113-1122.
[57]Mittra B,Ghosh P,Henry S,et al. Novel mode of resistance to Fusarium infection by a mild dose pre-exposure of cadmium in wheat[J]. Plant Physiology and Biochemistry,2004,42(10):781-787.
[58]Nelson R S,Citovsky V. Plant viruses. Invaders of cells and pirates of cellular pathways[J]. Plant Physiology,2005,138(4):1809-1814.
[59]Behmer S,Lloyd C,Raubenheimer D,et al. Metal hyperaccumulation in plants:mechanisms of defence against insect herbivores[J]. Functional Ecology,2005,19(1):55-66.
[60]Reeves R D,Brooks R R,Macfarlane R M. Nickel uptake by californian Streptanthus and Caulanthus with particula reference to the hyperaccumulator S. polygaloides Gray(Brassicaceae)[J]. American Journal of Botany,1981,708-712.
[61]Martens S N,Boyd R S. The ecological significance of nickel hyperaccumulation:a plant chemical defense[J]. Oecologia,1994,98(3/4):379-384.
[62]Fones H,Davis C A R,Rico A,et al. Metal hyperaccumulation armors plants against disease[J]. PLoS Pathogens,2010,6(9):e1001093.
[63]Walters D,Walsh D,Newton A,et al. Induced resistance for plant disease control:maximizing the efficacy of resistance elicitors[J]. Phytopathology,2005,95(12):1368-1373.
[64]Jonak C,krész L,Bgre L,et al. Complexity,cross talk and integration of plant MAP kinase signalling[J]. Current Opinion in Plant Biology,2002,5(5):415-424.
[65]Fones H,Preston G. Trade-offs between metal hyperaccumulation and induced disease resistance in metal hyperaccumulator plants[J]. Plant Pathology,2013,62(S1):63-71.
[66]Zhang W H,Huang Z,He L Y,et al. Assessment of bacterial communities and characterization of lead-resistant bacteria in the rhizosphere soils of metal-tolerant Chenopodium ambrosioides grown on lead-zinc mine tailings[J]. Chemosphere,2012,87(10):1171-1178.
[67]林春华,唐赛春,韦春强,等. 广西来宾市外来入侵植物的调查研究[J]. 杂草科学,2015,33(1):38-44.
[68]Sun Y,Zhou Q,Wang L,et al. Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator[J]. Journal of Hazardous Materials,2009,161(2):808-814.
[69]Wei S,Zhou Q,Saha U K,et al. Identification of a Cd accumulator Conyza canadensis[J]. Journal of Hazardous Materials,2009,163(1):32-35.
[70]Liu J,Shang W,Zhang X,et al. Mn accumulation and tolerance in Celosia argentea Linn.:a new Mn-hyperaccumulating plant species[J]. Journal of Hazardous Materials,2014,267:136-141.

相似文献/References:

[1]汤波,赵晓光,冯海涛,等.陕南某铅锌尾矿区土壤重金属迁移性及生态风险评价[J].江苏农业科学,2016,44(05):465.
 Tang Bo,et al.Mobility and ecological risk of heavy metals in soils around lead-zinc mine tailings in southern Shaanxi[J].Jiangsu Agricultural Sciences,2016,44(12):465.
[2]单爱琴,肖洁,杨秀婧.四氯化碳与四氯乙烯复合污染对土壤呼吸率的影响[J].江苏农业科学,2016,44(02):364.
 Shan Aiqin,et al.Effects of carbon tetrachloride and tetrachloroethylene combined pollution on soil respiration[J].Jiangsu Agricultural Sciences,2016,44(12):364.
[3]杨卓,陈婧.重金属污染土壤植物修复的EDTA调控效果[J].江苏农业科学,2017,45(02):258.
 Yang Zhuo,et al.Effect of adding EDTA on phytoremediation of heavy metal contaminated soil[J].Jiangsu Agricultural Sciences,2017,45(12):258.
[4]王春雨,罗少辉,段杰,等.化学修复剂对污染土壤中锌、铅、镉形态及其生物有效性的影响[J].江苏农业科学,2018,46(15):280.
 Wang Chunyu,et al.Influences of chemical fixing agent on form and biological effectiveness of Pb,Zn and Cd in contaminated soil[J].Jiangsu Agricultural Sciences,2018,46(12):280.
[5]宋凤敏,乔权,汤波,等.锰镍单一及复合污染对土壤脲酶活性的影响[J].江苏农业科学,2019,47(07):248.
 Song Fengmin,et al.Influences of single and combined pollution of manganse and nickel on soil urease activity[J].Jiangsu Agricultural Sciences,2019,47(12):248.
[6]王硕,李德生,俞洋,等.萱草对Cd、Pb、Zn复合污染土壤的修复潜力[J].江苏农业科学,2019,47(24):281.
 Wang Shuo,et al.Remediation potential of Hemerocallis fulva on Cd,Pb and Zn combined pollution soil[J].Jiangsu Agricultural Sciences,2019,47(12):281.

备注/Memo

备注/Memo:
收稿日期:2016-06-21
基金项目:国家自然科学基金(编号:31570414);江苏省自然科学基金(编号:BK20150503、BK20150504);江苏省博士后基金(编号:1501028B);江苏省高校自然科学基金(编号:14KJB610005);江苏省大学生创新训练项目(编号:201610299072X、201610299209W)。
作者简介:蔡红红(1990—),女,山东滨州人,硕士,主要从事生态学、环境微生物学研究。E-mail:believe094@126.com。
通信作者:戴志聪,博士,讲师,主要从事环境生态学、环境资源开发与利用研究。E-mail:daizhicong@163.com。
更新日期/Last Update: 2016-12-25