|本期目录/Table of Contents|

[1]代海艳,江翱,李伟.黄鳝醛酮还原酶的羰基解毒作用初探[J].江苏农业科学,2017,45(01):150-152.
 Dai Haiyan,et al.Preliminary exploration of carbonyl detoxification of aldo-keto reductase in Monopterus albus[J].Jiangsu Agricultural Sciences,2017,45(01):150-152.
点击复制

黄鳝醛酮还原酶的羰基解毒作用初探(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第45卷
期数:
2017年01期
页码:
150-152
栏目:
畜牧兽医与水产蚕桑
出版日期:
2017-01-05

文章信息/Info

Title:
Preliminary exploration of carbonyl detoxification of aldo-keto reductase in Monopterus albus
作者:
代海艳 江翱 李伟
长江大学湿地生态与农业利用教育部工程研究中心,湖北荆州 434025
Author(s):
Dai Haiyanet al
关键词:
黄鳝醛酮还原酶羰基胁迫存活率解毒作用
Keywords:
-
分类号:
S941.91
DOI:
-
文献标志码:
A
摘要:
醛酮还原酶(aldo-keto reductase,AKR)是机体依赖NAD(P)H的一类重要的氧化还原酶,在细胞有毒羰基化合物代谢中具有重要作用。迄今为止,国内外尚无鱼类醛酮还原酶基因及其功能的报道。为了解鱼类醛酮还原酶在细胞抗有毒羰基化合物胁迫过程中的作用,笔者比较了含重组黄鳝AKR基因的阳性菌株和不含该重组基因的阴性对照在丙酮醛及2,3-丁二酮2种羰基化合物处理后的存活率。结果表明,随着毒性物质处理时间的延长和处理浓度的升高,阳性菌株和对照菌株存活率均呈逐渐下降趋势;阳性菌株的存活率始终极显著高于对照菌株(P<0.01)。结果提示,黄鳝的醛酮还原酶具有一定的羰基解毒作用。该研究为进一步深入了解鱼类AKR基因的功能提供了基础资料。
Abstract:
-

参考文献/References:

[1]Jez J M,Bennett M J,Schelgel B P,et al. Comparative anatomy of the aldo-keto reductase superfamily[J]. Biochemical Journal,1997,326:625-636.
[2]Endo S,Matsunaga T,Mamiya H,et al. Characterization of a rat NADPH-dependent aldo-keto re ductase (AKR1B13) induced by oxidative stress[J]. Chemico-Biological Interactions,2009,178:151-157.
[3]Korenaga D,Takesue F,Yasuda M,et al. The relationship between cyclin B1 overexpression and lymph node metastasis in human colorectal cancer[J]. Surgery,2002,131(Suppl1):S114-S120.
[4]Penning T M. The aldo-keto reductases (AKRs)[J]. Chemico-Biological Interactions,2015,234:236-246.
[5]Miyata T,van Ypersele de Strihou C,Kurokawa K,et al. Alterations in nonenzymatic biochemistry in uremia:origin and significance of“carbonyl stress”in long-term uremic complications[J]. Kidney International,1999,55(2):389-399.
[6]Li D,Ferrari M,Ellis E M. Human aldo-keto reductase AKR7A2 protects against the cytotoxicity and mutagenicity of reactive aldehydes and lowers intracellular reactive oxygen species in hamster V79-4 cells[J]. Chemico-Biological Interactions,2012,195(1):25-34.
[7]Lapthorn A J,Zhu X F,Ellis E M. The diversity of microbial aldo-keto reductases from Escherichia coli K12[J]. Chemico-Biological Interactions,2013,202(1/2/3):168-177.
[8]Xu D Y,Liu X W,Guo C,et al. Methylglyoxal detoxification by an aldo-keto reductase in the cyanobacterium Synechococcus sp. PCC 7002[J]. Microbiology-SGM,2006,152(7):2013-2021.
[9]Sengupta D,Naik D,Reddy A R. Plant aldo-keto reductases (AKRs) as multi-tasking soldiers involved in diverse plant metabolic processes and stress defense:a structure-function update[J]. Journal of Plant Physiology,2015,179:40-55.
[10]钟琳琳.AKRIB10蛋白对α,β-不饱和羰基的解毒作用[D]. 沈阳:中国医科大学,2009.
[11]李丹,马东初,张歧山,等. 醛酮还原酶AKR7A1在活性醛引起的V79-4细胞损伤中的作用[J]. 中国医科大学学报,2013,42(5):408-411.
[12]Osorio-Yez C,Luis García-Tavera J,Téresa Pérez-Núez M,et al. Benzo(a)pyrene induces hepatic AKR1A1 mRNA expression in tilapia fish (Oreochromis niloticus)[J]. Toxicology Mechanisms and Methods,2012,22(6):438-444.
[13]Riner T L,Penning T M. Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid metabolism[J]. Steroids,2014,79(1):49-63.
[14]谷娟,严谨,吴卫华,等. 醛糖还原酶的研究进展[J]. 中南大学学报(医学版),2010,35(4):395-400.
[15]Barski O A,Tipparaju S M,Bhatnagar A. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification[J]. Drug Metabolism Reviews,2008,40(4):553-624.
[16]Penning T M. The aldo-keto reductases (AKRs):overview[J]. Chemico-Biological Interactions,2015,234(5):236-246.
[17]Ferguson G P,Ttemeyer S,Maclean M J,et al. Methylglyoxal production in bacteria:suicide or survival[J]. Archives of Microbiology,1998,170(4):209-218.
[18]Kalapos M P. Methylglyoxal in living organisms. Chemistry,biochemistry,toxicology and biological implications[J]. Toxicol Lett,1999,110,145-175.
[19]Ko J,Kim I,Yoo S,et al. Conversion of methylglyoxal to acetol by Escherichia coli aldo-keto reductases[J]. J Bacteriol,2005,187,5782-5789.
[20]Grant A W,Steel G,Waugh H,et al. A novel aldo-keto reductase from Escherichia coli can increase resistance to methylglyoxal toxicity[J]. FEMS Microbiology Letters,2003,218(1):93-99.

相似文献/References:

[1]冯龙,许世杰,李园园,等.黄鳝性逆转差异表达基因F25 cDNA的克隆和分析[J].江苏农业科学,2013,41(04):18.
[2]段国庆,江河,胡王,等.黄鳝早期发育阶段的摄食规律与生长特性[J].江苏农业科学,2013,41(06):176.
 Duan Guoqing,et al.Feeding law and growth characteristics of Monopterus albus in early developmental stage[J].Jiangsu Agricultural Sciences,2013,41(01):176.
[3]吴秀林,丁炜东,曹哲明,等.环境因子对黄鳝DMRT基因甲基化的影响[J].江苏农业科学,2016,44(06):60.
 Wu Xiulin,et al.Effect of environmental factors on methylation of ricefield eel DMRT gene[J].Jiangsu Agricultural Sciences,2016,44(01):60.
[4]周文宗,宋祥甫,王金庆.互花米草生物矿质液对黄鳝生长和营养成分的影响[J].江苏农业科学,2015,43(05):233.
 Zhou Wenzong,et al.Effects of biomineral liquid from Spartina alterniflora on growth and nutrient content of Monopterus albus[J].Jiangsu Agricultural Sciences,2015,43(01):233.
[5]王金庆,周文宗,张娟琴,等.绿色温室黄鳝网箱养殖的生态环境特征研究[J].江苏农业科学,2016,44(11):248.
 Wang Jinqing,et al.Study on ecological characteristics of cage culture for eel (Monopterus albus) in greenhouse[J].Jiangsu Agricultural Sciences,2016,44(01):248.
[6]阚延泽,江翱,王全禾,等.黄鳝醛酮还原酶对大肠杆菌非生物胁迫耐受性的影响[J].江苏农业科学,2019,47(01):159.
 Kan Yanze,et al.Effect of swamp eel aldo-keto reductase on abiotic stress tolerance of Escherichia coli[J].Jiangsu Agricultural Sciences,2019,47(01):159.
[7]张钊,涂娇,张小雪.嗜水气单胞菌感染对黄鳝Moronecidin基因表达的影响[J].江苏农业科学,2019,47(10):188.
 Zhang Zhao,et al.Effect of Aeromonas hydrophila infection on expression of Moronecidin gene in Monopterus albus[J].Jiangsu Agricultural Sciences,2019,47(01):188.

备注/Memo

备注/Memo:
收稿日期:2015-09-23
基金项目:国家大学生创新训练计划(编号:201510489007);湖北省教育厅基金(编号:Q20131206);湿地生态与农业利用教育部工程研究中心开放课题(编号:2013A011)。
作者简介:代海艳(1994—),女,湖北随州人,主要从事生物制药方面的研究。E-mail:1345410929@qq.com。
通信作者:李伟,博士,副教授,主要从事鱼类分子生物学研究。E-mail:wetli@yangtzeu.edu.cn。
更新日期/Last Update: 2017-01-05