|本期目录/Table of Contents|

[1]李帅,刘荣梅,李海涛,等.苏云金芽孢杆菌及vip基因在不同自然环境中分布情况的比较[J].江苏农业科学,2017,45(04):18-22.
 Li Shuai,et al.Geographical distribution of Bacillus thuringiensiss and vip3 genes in different natural environment[J].Jiangsu Agricultural Sciences,2017,45(04):18-22.
点击复制

苏云金芽孢杆菌及vip基因在不同
自然环境中分布情况的比较
(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第45卷
期数:
2017年04期
页码:
18-22
栏目:
生物技术
出版日期:
2017-02-20

文章信息/Info

Title:
Geographical distribution of Bacillus thuringiensiss and vip3 genes in different natural environment
作者:
李帅刘荣梅李海涛高继国
东北农业大学,黑龙江哈尔滨 150030
Author(s):
Li Shuaiet al
关键词:
苏云金芽孢杆菌vip基因鉴定气候类型生物活性测定
Keywords:
-
分类号:
Q938.1+1
DOI:
-
文献标志码:
A
摘要:
营养期杀虫蛋白(vegetative insecticidal protein,简称VIP)是苏云金芽孢杆菌(Bacillus thuringiensisBt)在营养期表达的一类新型杀虫毒蛋白,该蛋白的发现使得Bt杀虫剂在杀虫活性、杀虫范围方面得到很大突破。首次比较我国不同气候类型(热带:海南省,亚热带:广西壮族自治区,温带:黑龙江省)的Bt菌株和vip基因的分布情况。结果表明,从海南省841份土样中分离出156株Bt菌(18.55%),从广西地区1 420份土样中分离出356株Bt菌(25.07%),从黑龙江省1 010份土样中分离出167株Bt菌(16.53%);从海南省的156株Bt菌中鉴定出22个vip基因(占14.1%),从广西地区的356株Bt菌中鉴定出2个vip基因(占5.62%),然而,从黑龙江省的156株Bt菌中没有鉴定出vip基因(0%)。利用聚合酶链式反应(polymerase chain reaction,简称PCR)方法成功克隆出1个vip3Aa的全长基因并获得登录号KT792883,将该基因插入到表达载体pET-21b中,转化菌株Rosetta(DE3),在低温条件下表达88 ku的蛋白,将该蛋白进行生物活性测定,结果显示,该蛋白对甜菜夜蛾(Spodoptera exigua)具有较好的杀虫活性,LC50为5.124 ng/mg,对棉铃虫(Heliothis armigera)活性较低,LC50为870.1 ng/mg。研究结果显示,Bt菌株和vip基因的分布有地域性差异,在温度较高的热带、亚热带地区有比较丰富的Bt菌株和vip基因资源。研究将有利于充分利用土壤中的Bt菌株,分离具有自主知识产权和重要应用价值的新型vip抗虫基因,这将会为研究新型杀虫蛋白、延缓害虫抗性问题提供有益帮助。
Abstract:
-

参考文献/References:

[1]Bravo A,Soberón M. How to cope with insect resistance to Bt toxins?[J]. Trends in Biotechnology,2008,26(10):573-579.
[2]Bravo A,Gill S S,Soberón M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control[J]. Toxicon,2007,49(4):423-435.
[3]Cerón J,Ortíz A,Quintero R,et al. Specific PCR primers directed to identify cryⅠ and cryⅢ genes within a Bacillus thuringiensis strain collection[J]. Applied and Environmental Microbiology,1995,61(11):3826-3831.
[4]Schnepf E,Crickmore N,van Rie J,et al. Bacillus thuringiensis and its pesticidal crystal proteins[J]. Microbiology and Molecular Biology Reviews,1998,62(3):775-806.
[5]Selvapandiyan A,Arora N,Rajagopal R,et al. Toxicity analysis of N-and C-terminus-deleted vegetative insecticidal protein from Bacillus thuringiensis[J]. Applied and Environmental Microbiology,2001,67(12):5855-5858.
[6]Ben-Dov E,Zaritsky A,Dahan E,et al. Extended screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiensis[J]. Applied and Environmental Microbiology,1997,63(12):4883-4890.
[7]Guo S,Liu M,Peng D,et al. New strategy for isolating novel nematicidal crystal protein genes from Bacillus thuringiensis strain YBT-1518[J]. Applied and Environmental Microbiology,2008,74(22):6997-7001.
[8]Li H,Shu C,He X,et al:Detection and identification of vegetative insecticidal proteins vip3 genes of Bacillius thuringiensis strains using polymerase chain reaction-high resolution melt analysis[J]. Curr Microbio,2012,64(5):463-468.
[9]Bates S,Zhao J,Roush R,et al. Insect resistance management in GM crops:past,present and future[J]. Nature Biotechnology,2005,23(1):57-62.
[10]Estruch J J,Warren G W,Mullins M A,et al. Vip3A,a novel Bacillius thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopeteran insects[J]. Proceedings of the National Academy of Sciences,1996,93(11):5389-5394.
[11]Warren G W. Vegetative insecticidal proteins:novel proteins for control of corn pests[C]//Carozzi N,Koziel M. Advances in insect control:role of transgenic plants. London:Taylor and Francis,1997:109-121.
[12]Sattar S,Maiti M K. Molecular characterization of a novel vegetative insecticidal protein from Bacillius thuringiensis effective against sap-sucking insect pest[J]. Journal of Microbiology and Biotechnology,2011,21(9):937-946.
[13]Arrieta,G,Hernández A,Espinoza A M. et al. Diversity of Bacillus thuringiensis strains isolated from coffee plantations infested with the coffee berry borer Hypothenemus hampei[J]. Revista de Biologia Tropical,2004,52(3):757-764.
[14]Franco-Rivera A,Benintende G.,Cozzi J,et al. Molecular characterization of Bacillus thuringiensis strains from Argentina[J]. Antonie vanleeu,2004,86(1):87-92.
[15]Seifinejad A,Salehijouzani G R,Hosseinzadeh A,et al. Characteriztion of Lepidoptera-active cry and vip genes in Iranian Bacillus thuringiensis strains collection[J]. Biological Control,2008,44(2):216-226.
[16]伍赠玲,黄天培,邱君志,等. 一种改良的苏云金芽孢杆菌质粒DNA提取方法[J]. 福建农林大学学报(自然科学版),2004,33(2):200-201.
[17]Ibarra J E,del Rincón M C,Ordúz S,et al. Diversity of Bacillus thuringiensis strains from Latin America with insecticidal activity against different mosquito species[J]. Applied and Environmental Microbiology,2003,69(9):5269-5274.
[18]Wu Y,Gao M,Dai S,et al. Investigation of the cyt gene in Bacillus thuringiensis and the biological activities of Bt isolates from the soil of China[J]. Biological Control,2009,47(3):335-339.
[19]Patel K,Bhanshali F,Chaudhary A,et al. A new enrichment method for isolation of Bacillus thuringiensis from diverse sample types[J]. Applied Biochemistry and Biotechnology,2013,170(1):58-66.
[20]Yu X,Zheng A,Zhu J,et al. Characterization of vegetative insecticidal protein vip genes of Bacillus thuringiensis from Sichuan Basin in China[J]. Current Microbiology,2011,62(3):752-757.
[21]Liu J,Song F,Zhang J,et al. Identification of vip3A-type genes from Bacillus thuringiensis strains and characterization of a novel vip3A-type gene[J]. Letters in Applied Microbiology,2007,45(4):432-438. 〖SM(〗[HT5”SS〗江苏农业科学2017年第45卷第4期〖SM)〗 〖HS(21〗〖HT5”H〗[SQ*5]〖HT5”H〗 〖HT〗[HT6F]李先良,赵志常,高爱平,等. 芒果ANR基因的克隆及其表达分析[J]. 江苏农业科学,2017,454:22-25.
doi:10.15889/j.issn.1002-1302.2017.04.006[HT9.]
〖HT〗〖FK(W7*2。54〗[SQ1]〖HT2SS〗[CX2]芒果ANR基因的克隆及其表达分析 [CX]〖KH*2D〗[HT5K]李先良1, 赵志常2,3, 高爱平2,3, 陈业渊2,3, 黄建峰2,3, 党志国2,3, 罗睿雄2,3
〖HT6SS〗1.荆楚理工学院生物工程学院,湖北荆门 448000; 2.中国热带农业科学院热带作物品种资源研究所/
农业部华南作物基因资源与种质创制重点开发实验室; 3.国家热带果树品种改良中心,海南儋州 571737 〖FK)〗〖HT5”H〗〖HK50〗摘要:〖HTSS〗花青素还原酶(anthocyanidin reductase,简称ANR)基因是植物产生原花青素的关键基因,对于研究原花青素的代谢有重要的作用。根据已经报道的ANR基因的序列设计兼并引物,采用3′cDNA末端快速扩增(3′RACE)、5′cDNA末端快速扩增(5′RACE)方法,从芒果果实内克隆到1个ANR基因,其全长cDNA序列为1 201 bp。该基因开放阅读框为1 008 bp,编码335个氨基酸,等电点为5.41,分子量为36.33 ku。对基因组扩增得到了1 810 bp长度的片段,分析发现,该基因含有5个内含子,内含子位置分别为130~646 bp、733~814 bp、1 017~1 080 bp、1 259~1 349 bp、1 563~1 651 bp。通过系统发育树分析发现,该基因编码的蛋白与可可、葡萄等果树具有较近的亲缘关系。对不同芒果品种中ANR基因的表达进行分析发现,该基因在绿色的桂七品种中表达量较高,而在红色的贵妃品种中表达量较低。
〖HT5”H〗关键词:〖HT5”SS〗芒果;原花青素;花青素还原酶(ANR);基因克隆;表达分析
〖HT5”H〗中图分类号:S667.701;Q785 〖HT5”H〗文章编号:1002-1302(2017)04-0022-04[HS)][HT9.SS] 〖FQ(22。26,ZX,DY-W〗〖CDF13〗〖HT6SS〗
收稿日期:2016-01-07
基金项目:国家自然科学基金(编号:31471850);农业部热带作物种质资源保护(编号:15RZZY-07);农业部“948”计划(编号:2011-G13);湖北省荆门市科技局项目(编号:110588)。
作者简介:李先良(1976—),男,湖北武汉人,博士,副教授,研究方向为园艺植物遗传改良和分子生物学。E-mail:libusher@sina.com。
通信作者:赵志常,博士,副研究员,研究方向为热带果树遗传育种与分子生物学。E-mail:zhaozhichang2001@163.com。 [HS2][HT8.5H]参考文献:[HT8.SS]
[1]Dixon R A,Xie D Y,Sharma S B. Proanthocyanidins-a final frontier in flavonoid research?[J]. The New Phytologist,2005,165(1):9-28.
[2]Bagchi D,Bagchi M,Stohs S J,et al. Free radicals and grape seed proanthocyanidin extract:importance in human health and disease prevention[J]. Toxicology,2000,148(2/3):187-197.
[3]Bagchi D,Garg A,Krohn R,et al. Oxygen free radical scavenging abilities of vitamins C and E,and a grape seed proanthocyanidin extract in vitro[J]. Research Communications in Molecular Pathology and Pharmacology,1997,95(2):179-189.
[4]潘伟彬,黄毅斌. 植物单宁及其对牧草品质的影响研究进展Ⅲ.单宁对牧草品质和反刍动物养殖的影响[J]. 热带农业科学,2008,28(4):86-92.
[5]王晨,房经贵,曹雪,等. 葡萄中原花青素的代谢[J]. 中国农学通报,2009,25(9):169-173.
[6]Deluc L,Barrieu F,Marchive C,et al. Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway[J]. Plant Physiology,2006,140(2):499-511.
[7]Liu Y,Shi Z,Maximova S,et al. Proanthocyanidin synthesis in Theobroma cacao:genes encoding anthocyanidin synthase,anthocyanidin reductase,and leucoanthocyanidin reductase[J]. BMC Plant Biology,2013,13(1):202.
[8]Shen G A,Pang Y,Wu W,et al. Isolation and characterization of a putative anthocyanidin reductase gene from Ginkgo biloba[J]. Journal of Plant Physiology,2006,163(2):224-227.
[9]Ray H,Bock C,Georges F. Faba bean:Transcriptome analysis from etiolated seedling and developing seed coat of key cultivars for synthesis of proanthocyanidins,phytate,raffinose family oligosaccharides,vicine and convicine[J]. The Plant Genome,2015,8(1):346-348.
[10]Ferraro K,Jin A L,Nguyen T D,et al. Characterization of proanthocyanidin metabolism in pea (Pisum sativum) seeds[J]. BMC Plant Biology,2014,14(1):1-17.
[11]Wang Z,Meng D,Wang A,et al. The methylation of the PcMYB10 promoter is associated with green-skinned sport in Max Red Bartlett pear[J]. Plant Physiology,2013,162(2):885-896.
[12]Tada K,Minami H,Oka Y,et al. The mango:botany,production and uses[J]. Scientia Horticulturae,1998,73(1):63-65.
[13]王家保,王令霞,刘志媛,等. 芒果DNA提取方法比较及ISSR反应体系的优化[J]. 生物技术,2005,15(5):37-41.
[14]Devic M,Guilleminot J,Debeaujon I,et al. The BANYULS gene encodes a DFR-like protein and is a marker of early seed coat development[J]. The Plant Journal,1999,19(4):387-398.
[15]Xie D,Sharma S,Dixon R. Anthocyanidin reductases from Medicago truncatula and Arabidopsis thaliana[J]. Archives of Biochemistry and Biophysics,2004,422(1):91-102.
[16]Albert S,Delseny M,Devic M. BANYULS,a novel negative regulator of flavonoid biosynthesis in the Arabidopsis seed coat[J]. The Plant Journal,1997,11(2):289-299.
[17]Lepiniec L,Debeaujon I J M,Baudry A,et al. Genetics and biochemistry of seed flavonoids[J]. Plant Biology,2006,57(57):405-430.
[18]Xie D,Sharma S,Paiva N,et al. Role of anthocyanidin reductase,encoded by BANYULS in plant flavonoid biosynthesis[J]. Science,2003,299(565):396-399.
[19]Bogs J,Downey M,Harvey J,et al. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves[J]. Plant Physiology,2005,139(2):652-663.

相似文献/References:

[1]韩光杰,孙俊,李传明,等.苏云金芽孢杆菌原生质体的制备及大质粒转化[J].江苏农业科学,2014,42(11):37.
 Han Guangjie,et al(7).Preparation and transformation with large plasmid of Bacillus thuringiensis protoplasts[J].Jiangsu Agricultural Sciences,2014,42(04):37.
[2]孙钰航,刘艳杰,李海涛,等.辽宁千山地区含cry8类基因的苏云金芽孢杆菌的分离、克隆与表达[J].江苏农业科学,2014,42(10):28.
 Sun Yuhang,et al.Isolation, cloning and expression of cry8-like gene from Bacillus thuringiensis in Qianshan area of Liaoning Province[J].Jiangsu Agricultural Sciences,2014,42(04):28.
[3]邢芳芳,高明夫,胡兆平,等.1株生防芽孢杆菌对黄瓜根结线虫的防治、促生作用及其鉴定[J].江苏农业科学,2017,45(08):101.
 Xing Fangfang,et al.Prevention and control of cucumber root-knot nematode by a bio-control bacillus strain and its identification[J].Jiangsu Agricultural Sciences,2017,45(04):101.
[4]韩超,王丽娟,李海涛,等.苏云金芽孢杆菌BJH705菌株cry7Ab基因的克隆及表达[J].江苏农业科学,2017,45(14):85.
 Han Chao,et al.Cloning and expression of cry7Ab gene in Bacillus thuringiensis strain BJH705Bt[J].Jiangsu Agricultural Sciences,2017,45(04):85.
[5]关鹏,秦培钢,代小娟,等.苏云金芽孢杆菌cry1Da5基因的克隆与表达[J].江苏农业科学,2020,48(2):118.
 Guan Peng,et al.Cloning and expression of cry1Da5 gene from Bacillus thuringiensis strain[J].Jiangsu Agricultural Sciences,2020,48(04):118.

备注/Memo

备注/Memo:
收稿日期:2016-01-12
基金项目:国家自然科学基金(编号:31401812);东北农业大学科学研究基金(编号:2010RCB54)
作者简介:李帅(1990—),女,黑龙江依安人,硕士研究生,主要研究方向为苏云金芽孢杆菌vip基因的挖掘及作用机制。E-mail:ls90729@163.com。
通信作者:高继国,硕士,教授,主要研究方向为苏云金芽孢杆菌新型基因的发掘及作用机制。E-mail:gaojiguo1961@hotmail.com。
更新日期/Last Update: 2017-02-20