|本期目录/Table of Contents|

[1]梁明霞,郭英,何云晓,等.重金属处理下萱草的富集能力和生理生态响应[J].江苏农业科学,2017,45(08):269-274.
 Liang Mingxia,et al.Phytoremediation potential and eco-physiological responses of ornamental daylily(Hemerocallis citrine Baroni) subjected to different heavy metal treatments[J].Jiangsu Agricultural Sciences,2017,45(08):269-274.
点击复制

重金属处理下萱草的富集能力和生理生态响应(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第45卷
期数:
2017年08期
页码:
269-274
栏目:
资源与环境
出版日期:
2017-04-22

文章信息/Info

Title:
Phytoremediation potential and eco-physiological responses of ornamental daylily(Hemerocallis citrine Baroni) subjected to different heavy metal treatments
作者:
梁明霞郭英何云晓陈娟
绵阳师范学院城乡建设与规划学院,四川绵阳 621000
Author(s):
Liang Mingxiaet al
关键词:
萱草生理生态响应生物富集重金属
Keywords:
-
分类号:
X171.4
DOI:
-
文献标志码:
A
摘要:
为了城乡地区的美化和土壤的长期净化,观赏园艺植物的生物修复潜力日益受到关注。通过盆栽试验,观测观赏园艺植物萱草(Hemerocallis citrine Baroni)的2个主要栽培种猛子花和白花,对不同重金属处理的生理生态响应和生物富集能力,探讨萱草对重金属污染土壤的净化和修复潜力。结果表明,2个栽培种均对镉、锰、铜处理有良好的耐受性和富集能力。镉、锰和铜不同程度地影响了萱草的生长和生理过程。在所有重金属处理中,镉处理表现出比铜和锰更大的负面效应。研究表明,萱草的2个栽培种猛子花和白花均可用于富集重金属,同时实现对污染土壤的净化和美化。在镉、铜和锰处理下,猛子花具有更好的生理生态响应,可作为生物修复和固定植物;而白花在锰处理下具有高的转化因子和地上部生物富集率,可作为生物提取植物。
Abstract:
-

参考文献/References:

[1]陈涛,常庆瑞,刘京,等. 长期污灌农田土壤重金属污染及潜在环境风险评价[J]. 农业环境科学学报,2012,31(11):2152-2159.
[2]周启星,宋玉芳. 污染土壤修复原理与方法[M]. 北京:科学出版社,2004.
[3]Baryla A,Carrier P,Franck F,et al. Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil:causes and consequences for photosynthesis and growth[J]. Planta,2001,212(5):696-709.
[4]Wang Y B,Yan A L,Dai J,et al. Accumulation and tolerance characteristics of cadmium in Chlorophytum comosum:a popular ornamental plant and potential Cd hyperaccumulator[J]. Environmental Monitoring and Assessment,2012,184(2):929-937.
[5]Nakamura M,Ochiai T,Noji M,et al. An improved tolerance to cadmium by overexpression of two genes for cysteine synthesis in tobacco[J]. Plant Biotechnology,2014,31(2):141-147.
[6]Yang S Y,Huang Y J,Zhang J,et al. Physio-biochemical response to copper stress of Miscanthus Floridulus,a pioneer plant species in mine wastes-potential for phytoremediation[J]. Fresenius Environmental Bulletin,2014,23(3):686-692.
[7]Fang W,Kao C H. Enhanced peroxidase activity in rice leaves in response to excess iron,copper and zinc[J]. Plant Science,2000,158(1/2):71-76.
[8]Kalai T,Khamassi K,Silva J A T D,et al. Cadmium and copper stress affect seedling growth and enzymatic activities in germinating barley seeds[J]. Archives of Agronomy and Soil Science,2014,60(6):765-783.
[9]Gouia H,Ghorbal M H,Meyer C. Effects of cadmium on activity of nitrate reductase and on other enzymes of the nitrate assimilation pathway in bean[J]. Plant Physiology and Biochemistry,2000,38(7/8):629-638.
[10]Mallick N,Mohn F H. Use of chlorophyll fluorescence in metal-stress research:a case study with the green microalga Scenedesmus[J]. Ecotoxicology Environmental Safety,2003,55(1):64-69.
[11]Tkalec M,Prebeg T,Roje V,et al. Cadmium-induced responses in duckweed Lemna minor L.[J]. Acta Physiologiae Plantarum,2008,30(6):881-890.
[12]Salt D E,Smith R D,Raskin I. Phytoremediation[J]. Annual Review of Plant Biology,1998,49:643-668.
[13]Hernández-Allica J,Becerril J M,Garbisu C. Assessment of the phytoextraction potential of high biomass crop plants[J]. Environmental Pollution,2008,152(1):32-40.
[14]Hernández-Apaolaza L,Gascó A M,Gascó J M,et al. Reuse of waste materials as growing media for ornamental plants[J]. Bioresource Technology,2005,96(1):125-131.
[15]González-Chávez M C,Carrillogonzález R. Tolerance of Chrysantemum maximum to heavy metals:the potential for its use in the revegetation of tailings heaps[J]. Journal of Environment Science China,2013,25(2):367-375.
[16]Chatterjee S,Singh L,Chattopadhyay B,et al. A study on the waste metal remediation using floriculture at East Calcutta Wetlands,a Ramsar site in India[J]. Environmental Monitoring and Assessment,2011,184(8):5139-5150.
[17]Liu J N,Zhou Q X,Sun T,et al. Growth responses of three ornamental plants to Cd and Cd-Pb stress and their metal accumulation characteristics[J]. Journal of Hazardous Materials,2008,151(1):261-267.
[18]Caldelas C,Araus J L,Febrero A,et al. Accumulation and toxic effects of chromium and zinc in Iris pseudacorus L.[J]. Acta Physiologiae Plantarum,2012,34(3):1217-1228.
[19]Ukpebor E E,Ukpebor J E,Aigbokhan E,et al. Delonix regia and Casuarina equisetifolia as passive biomonitors and as bioaccumulators of atmospheric trace metals[J]. Journal of Environment Science China,2010,22(7):1073-1079.
[20]Miyake T,Yahara T. Isolation of polymorphic microsatellite loci in Hemerocallis fulva and Hemerocallis citrina (Hemerocallidaceae)[J]. Molecular Ecology Notes,2006,6(3):909-911.
[21]Noguchi J,Hong D Y. Multiple origins of the Japanese nocturnal Hemerocallis citrina var. vespertina (Asparagales:Hemerocallidaceae):evidence from noncoding chloroplast DNA sequences and morphology[J]. International Journal of Plant Sciences,2004,165(1):219-230.
[22]Lichtenthaler H K. Chlorophylls and carotenoids-pigments of photosynthetic biomembranes[J]. Methods in Enzymology,1987,148(1):350-382.
[23]Bates L S,Waldren R P,Teare I D. Rapid determination of free proline for water-stress studies[J]. Plant and Soil,1973,39(1):205-207.
[24]Robbani M,Banno K,Kakegawa M. Differential flooding tolerance of some dwarfing pear rootstock clones selected from the progenies of Pyrus betulaefolia and P. calleryana[J]. Journal of the Japanese Society for Horticulture Science,2006,75(4):297-305.
[25]Punz W F,Sieghardt H. The response of roots of herbaceous plant-species to heavy-metals[J]. Environmental and Experimental Botany,1993,33(93):85-98.
[26]Mehta S K,Gaur J P. Heavy-metal-induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris[J]. New Phytologist,1999,143(2):253-259.
[27]Hayat S,Hayat Q,Alyemeni M N,et al. Cumulative effects of proline and salicylic acid on the cadmium-induced changes in Cicer arietinum L.[J]. Fresenius Environmental Bulletin,2014,23(2):330-340.
[28]Kuznetsov V V,Shevyakova N I. Stress responses of tobacco cells to high temperature and salinity proline accumulation and phosphorylation of polypeptides[J]. Physiologia Plantarum,1997,100(2):320-326.
[29]Whiting S N,Leake J R,McGrath S P,et al. Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens[J]. New Phytologist,2000,145(2):199-210.
[30]Zelinová V,Alemayehu A,Bocˇová B,et al. Primary stress response induced by different elements is mediated through auxin signalling in barley root tip[J]. Acta Physiologiae Plantarum,2014,36(11):2935-2946.
[31]Sun Y,Zhou Q,Xu Y,et al. Phytoremediation for co-contaminated soils of benzo[a]pyrene (B[a]P) and heavy metals using ornamental plant Tagetes patula[J]. Journal of Hazardous Materials,2011,186(2/3):2075-2082.
[32]Sun Y B,Zhou Q X,Liu W T,et al. Joint effects of arsenic and cadmium on plant growth and metal bioaccumulation:a potential Cd-hyperaccumulator and As-excluder Bidens pilosa L.[J]. Journal of Hazardous Materials,2009,165(1/2/3):1023-1028.
[33]Yu Z G,Zhou Q X. Growth responses and cadmium accumulation of Mirabilis jalapa L. under interaction between cadmium and phosphoru[J]. Journal of Hazardous Materials,2009,167(1/3):38-43.
[34]Bluskov S,Arocena J M,Omotoso O O,et al. Uptake,distribution,and speciation of chromium in Brassica juncea[J]. International Journal of Phytoremediation,2005,7(2):153-165.
[35]Lux A,Sottníková A,Opatrná J,et al. Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity[J]. Physiologia Plantarum,2004,120(4):537-545.
[36]Boominathan R,Doran P M. Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator,Thlaspi caerulescens[J]. Biotechnology and Bioengineering,2003,83(2):158-167.
[37]Baker A J M,Reeves R D,Hajar A S M. Heavy-metal accumulation and tolerance in British populations of the metallophyte Thlaspi-caerulescens J-and-C-Presl (Brassicaceae)[J]. New Phytologist,1994,127(1):61-68.

相似文献/References:

[1]王硕,李德生,俞洋,等.萱草对Cd、Pb、Zn复合污染土壤的修复潜力[J].江苏农业科学,2019,47(24):281.
 Wang Shuo,et al.Remediation potential of Hemerocallis fulva on Cd,Pb and Zn combined pollution soil[J].Jiangsu Agricultural Sciences,2019,47(08):281.
[2]张志国,丁寒雪,蒋成娣,等.重瓣萱草AGAMOUS基因的克隆与表达分析[J].江苏农业科学,2022,50(23):40.
 Zhang Zhiguo,et al.Cloning and expression analysis of AGAMOUS homologous genes from double-flower daylily[J].Jiangsu Agricultural Sciences,2022,50(08):40.

备注/Memo

备注/Memo:
收稿日期:2016-07-20
基金项目:四川省教育厅项目(编号:10ZB047);四川省高校重点实验室开放基金(编号:ZDS1005)。
作者简介:梁明霞(1983—),女,湖南耒阳人,硕士,助教,主要从事园林植物应用研究。E-mail:52388752@qq.com。
通信作者:陈娟,博士,副教授,主要从事植物生态学研究。E-mail:1228380840@qq.com。
更新日期/Last Update: 2017-04-20