|本期目录/Table of Contents|

[1]侯维海,王建林,旦巴,等.西藏野生甜荞碳酸酐酶基因FsCA1的克隆和生物信息学分析[J].江苏农业科学,2017,45(10):20-23.
 Hou Weihai,et al.Cloning and bioinformatics analysis of carbonic anhydrase gene FsCA1 of wild sweet buckwheat in Tibet[J].Jiangsu Agricultural Sciences,2017,45(10):20-23.
点击复制

西藏野生甜荞碳酸酐酶基因FsCA1
克隆和生物信息学分析
(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第45卷
期数:
2017年10期
页码:
20-23
栏目:
生物技术
出版日期:
2017-05-20

文章信息/Info

Title:
Cloning and bioinformatics analysis of carbonic anhydrase gene FsCA1 of wild sweet buckwheat in Tibet
作者:
侯维海 王建林 旦巴 胡单
西藏农牧学院西藏高原作物分子育种实验室,西藏林芝 860000
Author(s):
Hou Weihaiet al
关键词:
西藏甜荞碳酸酐酶FsCA1基因三维结构预测生物信息学
Keywords:
-
分类号:
S188
DOI:
-
文献标志码:
A
摘要:
依据已公布的荞麦转录组测序信息,从Contig文库中获得了1个碳酸酐酶(carbonic anhydrase,简称CA)转录本,通过逆转录PCR(RT-PCR)扩增得到CA基因全长序列。生物信息学分析表明,FsCA1基因全长1 233 bp,开放阅读框978 bp,编码325个氨基酸;分子量35.11 ku,等电点7.59;包含9个α-螺旋、6个β-折叠、多个无规则卷曲和延伸链;含有1个信号肽和1个跨膜区;具有β-类碳酸酐酶典型的2个氨基酸保守域。亚细胞定位显示,该蛋白出现在叶绿体中的可能性最大。利用同源建模法构建了FsCA1三维结构模型,表明甜荞CA与豌豆CA同型八聚体能很好地匹配,推测甜荞CA也是同型八聚体。用实时荧光定量PCR检测FsCA1在荞麦不同器官中的表达水平,结果显示,FsCA1 在叶中表达水平最高,其次是在茎中,在根中表达水平最低。
Abstract:
-

参考文献/References:

[1]Hewett-Emmett D,Tashian R E. Functional diversity,conservation,and convergence in the evolution of the alpha-,beta-,and gamma-carbonic anhydrase gene families[J]. Molecular Phylogenetics and Evolution,1996,5(1):50-77.
[2]Tems U,Burnell J N. Characterization and expression of the maize β-carbonic anhydrase gene repeat regions[J]. Plant Physiology and Biochemistry,2010,48(12):945-951.
[3]Deng Q H,Gan L,Fu C H,et al. Comparison of carbonic anhydrase activities of several species in Brassica[J]. Plant Physiol Commun,2009,45(7):663-666.
[4]Moroney J V,Bartlett S G,Samuelsson G. Carbonic anhydrases in plants and algae[J]. Plant Cell and Environment,2001,24(2):141-153.
[5]杨霄,刘再华,曹建华,等. 岩溶区和非岩溶区玉米光合作用与锌含量和碳酸酐酶关系的对比研究[J]. 中国岩溶,2008,27(2):20.
[6]Tsuzuki M,Miyachi S,Edwards G E. Localization of carbonic anhydrase in mesophyll cells of terrestrial C3 plants in relation to CO2 assimilation[J]. Plant Cell Physiol,1985,26:881-891.
[7]Ivanov B N,Ignatova L K,Romanova A K. Diversityinforms and functions of carbonic anhydrase interrestrial higher plants[J]. Russ J Plant Physiol,2007,54(2):143-162.
[8]Tetu S G,Tanz S K,Vella N,et al. The flaveria bidentis β-carbonic anhydrase gene family encodes cytosolic and chloroplastic isoforms demonstrating distinct organ-specific expression patterns[J]. Plant Physiol,2007,144(3):1316-1327.
[9]陈虎,何新华,罗聪,等. 低温胁迫下龙眼碳酸酐酶基因(CA)的克隆与表达分析[J]. 园艺学报,2012,39(2):243-252.
[10]Fabre N,Reiter I M,Becuwe-Linka N,et al. Characterization and expression analysisof genes encoding α and β-carbonic anhydrases in Arabidopsis[J]. Plant Cell Environ,2007,30(5):617-629.
[11]Coleman J R. Carbonic anhydrase and its role in photosynthesis[J]. Adv Photosyn Respiration,2000,9:353-367.
[12]Wang Y Q,Feechan A,Yun B W,et al. S-nitrosylation of AtSABP3 antagonizes the expression of plant immunity[J]. The Journal of Biological Chemistry,2009,284(4):2131-2137.
[13]Ferreira F J,Guo C,Coleman J R. Reduction of plastid-localized carbonic anhydrase activity results in reduced Arabidopsis seedling survivorship[J]. Plant Physiology,2008,147(2):585-594.
[14]Hu H H,Boisson-Dernier A,Israelsson-Nordstroem M,et al. Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells[J]. Nature Cell Biology,2010,12(1):87-93,S1-S18.
[15]Price G D,von Caemmerer S,Evans J R,et al. Specific reduction of chloroplast carbonic anhydrasea ctivity by antisense RNA in transgenic tobacco plants has a minor effect on photosynthetic CO2 assimilation[J]. Planta,1994,193(3):331-340.
[16]Hoang C V,Chapman K D. Biochemical and molecular inhibition of plastidial carbonic anhydrase reduces the incorporation of acetate into lipids in cotton embryos and tobacco cell suspensions and leaves[J]. Plant Physiology,2002,128(4):1417-1427.
[17]Restrepo S,Myers K L,del Pozo O,et al. Gene profling of acompatible interaction between Phytophthora infestans and Solanum tuberosum suggests a role for carbonic anhydrase[J]. Mol Plant-Microbe Interact,2005,18(9):913-922.
[18]Tomiyoshi M,Yasui Y,Ohsako T,et al. Phylogenetic analysis of AGAMOUS sequences reveals the origin of the diploid and tetraploid forms of self-pollinating wild buckwheat,Fagopyrum homotropicum Ohnishi[J]. Breeding Science,2012,62(3):241-247.

相似文献/References:

[1]杭红涛,王瑞,邢德科,等.喀斯特生境下3种草本能源植物的光合产能及适应性[J].江苏农业科学,2018,46(17):248.
 Hang Hongtao,et al.Study on photosynthetic capacity and adaptability of three herbaceous energy plant species under karst habitats[J].Jiangsu Agricultural Sciences,2018,46(10):248.

备注/Memo

备注/Memo:
收稿日期:2016-02-04
基金项目:国家自然科学基金(编号:31360300、31560362);西藏自治区重点项目(编号:XZXTCX-2016)。
作者简介:侯维海(1985—),男,甘肃张掖人,硕士,讲师,从事作物遗传育种研究。E-mail:418267205@qq.com。
通信作者:王建林,教授,从事作物栽培与育种研究。E-mail:xzwangjl@126.com。
更新日期/Last Update: 2017-05-20