|本期目录/Table of Contents|

[1]翟红梅,冯俊霞,韩伟,等.微咸水富氧灌溉对番茄生长、品质及土壤微生物的影响[J].江苏农业科学,2017,45(12):85-88.
 Zhai Hongmei,et al.Effects of oxygen-enriched irrigation with brackish water on growth and fruit quality of tomato and soil microorganism[J].Jiangsu Agricultural Sciences,2017,45(12):85-88.
点击复制

微咸水富氧灌溉对番茄生长、品质及土壤微生物的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第45卷
期数:
2017年12期
页码:
85-88
栏目:
园艺与林学
出版日期:
2017-06-20

文章信息/Info

Title:
Effects of oxygen-enriched irrigation with brackish water on growth and fruit quality of tomato and soil microorganism
作者:
翟红梅12 冯俊霞2 韩伟2 刘孟雨1
1.中国科学院遗传与发育生物学研究所农业资源研究中心/中国科学院农业水资源重点实验室/河北省
节水农业重点实验室,河北石家庄 050022; 2.石家庄学院化工学院,河北石家庄 050035
Author(s):
Zhai Hongmeiet al
关键词:
富氧灌溉微咸水番茄土壤微生物土壤酶
Keywords:
-
分类号:
S641.207
DOI:
-
文献标志码:
A
摘要:
采用盆栽试验法,研究微咸水富氧灌溉对番茄生长、品质、土壤微生物活性的影响,试验包括3个水平咸水灌溉:0.2、2.0、5.0 g/L,2个水平的水溶氧浓度处理:3.0(对照)、7.0~9.0 mg/L。研究发现,富氧灌溉能够显著提高番茄的生物量、品质,在5.0 g/L咸水灌溉下,富氧灌溉分别能提高地上部、根部生物量32.0%、32.4%,在2.0 g/L咸水灌溉下,富氧灌溉分别提高维生素C含量69.95%、可溶性蛋白质含量23.16%、可溶性糖含量13.09%。富氧灌溉能够增加盐胁迫下土壤的微生物量和活性,
Abstract:
-

参考文献/References:

[1]Wan S,Kang Y H,Wang D,et al. Effect of drip irrigation with saline water on tomato (Lycopersicon esculentum Mill) yield and water use in semi-humid area [J]. Agricultural Water Management,2007,90(1/2):63-74.
[2]Ghollarata M,Raiesi F. The adverse effects of soil salinization on the growth of Trifolium alexandrinum L. and associated microbial and biochemical properties in a soil from Iran [J]. Soil Biology and Biochemistry,2007,39(7):1699-1702.
[3]Bhattarai S P,Pendergast L,Midmore D J. Root aeration improves yield and water use efficiency of tomato in heavy clay and saline soils [J]. Scientia Horticulturae,2006,108(3):278-288.
[4]温改娟,蔡焕杰,陈新明,等. 加气灌溉对温室番茄生长和果实品质的影响[J]. 西北农林科技大学学报(自然科学版),2013,41(4):113-118.
[5]Bhattarai S,Su N,Midmore D J. Oxygation unlocks yield potentials of crops in oxygen-limited soil environments [J]. Advances in Agronomy,2005,88(5):313-377.
[6]Zhai H M,Dong B D,Qiao Y Z,et al. Irrigation with aerated saline water enhances water use efficiency and salt tolerance of tomato [J]. Fresenius Environmental Bulletin,2012,21(8):2072-2077.
[7]Egamberdieva D,Renella G,Wirth S,et al. Secondary salinity effects on soil microbial biomass [J]. Biology and Fertility of Soils,2010,46(5):445-449.
[8]高俊凤. 植物生理学实验指导[M]. 北京:高等教育出版社,2006.
[9]Vance E D,Brookes P C,Jenkinson P S. An extraction method for measuring microbial biomass [J]. Soil Biology and Biochemistry,1987,19(19):703-707.
[10]Anderson J P E. Methods of soil analysis[M]. Madison:American Society of Agronomy,1982:837-871.
[11]Nannipieri P,Ceccanti B,Cervell,S,et al. Extraction of phosphatase,urease,protease,organic carbon and nitrogen from soil [J]. Soil Science Society of America Journal,1980,44(45):1011-1016.
[12]Ladd J N,Butler J H A. Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates [J]. Soil Biology and Biochemistry,1972,4(1):19-30.
[13]Tabatabai M A,Weaver R W,Angle J S,et al. Methods of soil analysis:microbiological and biochemical properties [M]. New York:Soil Science Society of America,1994,775-833.
[14]Meek B D,Ehlig C F,Stolzy L H,et al. Furrow and strickle irrigation:effects on soil oxygen and ethylene and tomatoyield [J]. Soil Science Society of America Journal,1983,47(4):631-635.
[15]Brzezinska M,Stepniewski W,Stepniewska Z,et al. Effect of oxygen deficiency on soil dehydrogenase activity in a pot experiment with triticale cv. Jago vegetation [J]. International Agrophysics,2001,15(3):145-149.
[16]Sardinha M,Muller T,Schmeisky H,et al. Microbial performance in soils along a salinity gradient under acidic conditions [J]. Applied Soil Ecology,2003,23:237-244.
[17]Tripathi S,Kumari S,Chakraborty A,et al. Microbial biomass and its activities in salt-affected coastal soils [J]. Biology and Fertility of Soils,2006,42(3):273-277.
[18]Wong V N L,Dalal R C,Greene R S B. Salinity and sodicity effects on respiration and microbial biomass of soil [J]. Biology and Fertility of Soils,2008,44(7):943-953.
[19]Rietz D,Haynes R. Effects of irrigation-induced salinity and sodicity on soil microbial activity [J]. Soil Biology and Biochemistry,2003,35(6):845-854.
[20]Avidano L,Gamalero E,Cossa G P,et al. Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators[J]. Applied Soil Ecology,2005,30(1):21-33.
[21]Tripathi S,Chakraborty A,Chakrabarti K,et al. Enzyme activities and microbial biomass in coastal soils of India [J]. Soil Biology and Biochemistry,2007,39(11):2840-2848.

相似文献/References:

[1]李朝阳,杨玉辉,王兴鹏.灌溉水质对土壤碱解氮分布特征的影响[J].江苏农业科学,2017,45(11):218.
 Li Zhaoyang,et al.Effects of irrigation water quality on distribution characteristics of soil alkali-hydrolysable nitrogen[J].Jiangsu Agricultural Sciences,2017,45(12):218.
[2]穆晓坤,李文慧,魏彦凤,等.不同物料下咸、淡水灌溉对设施黄瓜土壤特性和品质的影响[J].江苏农业科学,2023,51(18):115.
 Mu Xiaokun,et al.Effects of salt and fresh water irrigation under different materials on soil characteristics and quality of facility cucumber[J].Jiangsu Agricultural Sciences,2023,51(12):115.

备注/Memo

备注/Memo:
收稿日期:2016-11-08
基金项目:国家科技支撑计划(编号:2009BADA3B-03-08、2011BAD06B02-3);河北省科技计划(编号:15222903D);石家庄学院博士基金(编号:21602000201)。
作者简介:翟红梅(1979—),女,河北南宫人,博士,讲师,主要从事微生物生态学研究。E-mail:hongmei_zhai@163.com。
更新日期/Last Update: 2017-06-20