|本期目录/Table of Contents|

[1]张磊,孙晓棠,崔汝强.水稻与水稻内寄生线虫互作机制研究进展[J].江苏农业科学,2017,45(16):1-7.
 Zhang Lei,et al.Research progress on interaction mechanism of parasitic nematodes in rice and rice[J].Jiangsu Agricultural Sciences,2017,45(16):1-7.
点击复制

水稻与水稻内寄生线虫互作机制研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第45卷
期数:
2017年16期
页码:
1-7
栏目:
专论与综述
出版日期:
2017-08-20

文章信息/Info

Title:
Research progress on interaction mechanism of parasitic nematodes in rice and rice
作者:
张磊 孙晓棠 崔汝强
江西农业大学农学院,江西南昌 330045
Author(s):
Zhang Leiet al
关键词:
寄生线虫水稻侵染机制代谢水平防卫基因互作机制植物激素研究进展
Keywords:
-
分类号:
S432.4+5
DOI:
-
文献标志码:
A
摘要:
水稻内寄生线虫病是水稻重要病害之一。我国作为水稻重要种植区,长期受该类线虫病危害,产量损失无法统计,且国内相关研究存在较大真空。水稻潜根线虫、水稻根结线虫和水稻干尖线虫为我国水稻种植区重要的线虫病害,近年来对它们与水稻互作机制的研究已取得较大进展。水稻内寄生线虫通过机械损伤和分泌多种效应蛋白改变寄主细胞结构与功能侵染水稻。水稻则主动调节其代谢水平、营养配置、细胞壁修饰酶编码基因以及防卫相关基因表达水平来抵抗水稻内寄生线虫的侵染。水杨酸(SA)途径、茉莉酸甲酯(JA)途径为水稻抵抗该类线虫侵染的主要激素途径。乙烯(ET)在水稻抵抗RKNs中依赖完整的JA途径,而在抵抗RRNs时,则不依赖JA途径。外源性脱落酸(ABA)通过与SA/JA/ET途径拮抗使水稻对RRNs的亲和性增强。本文介绍了我国水稻种植区内3种主要的内寄生线虫病,并对其致病机制、水稻抗该类线虫病机理及植物激素在其互作中的作用进行了概述,对研究水稻内寄生线虫病的防治具有重要理论意义,为深入研究开发水稻抗线虫资源奠定基础。
Abstract:
-

参考文献/References:

[1]Babatola J O,Bridge J. Feeding behaviour and histopathology of Hirschmanniella oryzae,H. imamuri,and H. spinicaudata on rice[J]. Journal of Nematology,1980,12(1):48-53.
[2]Abad P,Gouzy J,Aury J M,et al. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita[J]. Nature Biotechnology,2008,26(8):909-915.
[3]Karakas M. Life cycle and mating behaviour of Hirschmanniella oryzae(Namatoda:Pratylenchidae) on excised Oryzae sativa roots[J]. Fen Bilimleri Dergisi,2004,25:1-6.
[4]Bridge J,Plowright R,Peng D. Nematode parasites of rice[M]//Luc M,Sikora R A,Bridge J. Plant-parasitic nematodes in subtropical and tropical agriculture. Wallingford:CAB International,2005:87-130.
[5]Jones J T,Haegeman A,Danchin E G,et al. Top 10 plant-parasitic nematodes in molecular plant pathology[J]. Molecular Plant Pathology,2013,14(9):946-961.
[6]冯志新. 水稻根结线虫病的发现[J]. 广东农业科学,1974(3):35-37.
[7]芮凯,符美英,王会芳,等. 海南水稻根结线虫病发生情况及防控建议[J]. 中国植保导刊,2016,36(1):27-30.
[8]高云国. 浅谈水稻干尖线虫病的发生及防治[J]. 黑龙江科技信息,2010(11):102.
[9]刘立宏,王峰,李丹蕾,等. 水稻干尖线虫X-box结合蛋白基因克隆及功能[J]. 东北林业大学学报,2014,42(1):148-151.
[10]汪智渊,陆菲,杨红福,等. 水稻干尖线虫对水稻剑叶的危害及对生长和产量的影响[J]. 天津农业科学,2016,22(6):101-102.
[11]王步勇,李丹蕾,王峰,等. 水稻干尖线虫翻译控制肿瘤蛋白基因的克隆及表达分析[J]. 湖南农业大学学报(自然科学版),2016,42(1):20-26.
[12]崔汝强,葛建军,胡学难,等. 水稻干尖线虫快速分子检测技术研究[J]. 植物检疫,2010,24(1):10-12.
[13]裴艳艳,骆爱丽,谢辉,等. 中国不同地区水稻干尖线虫种群的繁殖特性研究[J]. 西北农林科技大学学报(自然科学版),2010,38(6):165-170.
[14]裴艳艳,程曦,徐春玲,等. 中国水稻干尖线虫部分群体对水稻的致病力测定[J]. 中国水稻科学,2012,26(2):218-226.
[15]Hollis J P,Keoboonrueng S. Nematode parasites of rice[M]//Nickle W R. Plant and insect nematodes. New York,USA,1984:95-146.
[16]Maung Z T,Kyi P P,Myint Y Y,et al. Occurrence of the rice root nematode Hirschmanniella oryzae on monsoon rice in Myanmar[J]. Tropical Plant Pathology,2010,35(1):3-10.
[17]冯志新. 农作物寄生线虫的初步调查鉴定[J]. 植物保护学报,1981,8(2):116.
[18]孙晓棠,胡长志,蒋琦,等. 江西水稻6种潜根线虫的形态学鉴定[J]. 江西农业大学学报,2013,35(6):1179-1182.
[19]张绍升,谢志成,刘国坤,等. 潜根线虫对稻苗根系侵染的影响[J]. 亚热带农业研究,2011,7(3):166-170.
[20]Babatola J O,Bridge J. Pathogenicity of Hirschmanniella oryzae,H. spinicaudata,and H. imamuri on rice[J]. Journal of Nematology,1979,11(2):128-132.
[21]Fosu-Nyarko J,Jones M G. Advances in understanding the molecular mechanisms of root lesion nematode host interactions[J]. Annual Review of Phytopathology,2016,54(1):253-278.
[22]Gheysen G,Mitchum M G. How nematodes manipulate plant development pathways for infection[J]. Current Opinion in Plant Biology,2011,14(4):415-421.
[23]Soriano I,Reversat G. Management of Meloidogyne graminicola and yield of upland rice in South-Luzon,Philippines[J]. Nematology,2003,5(6):879-884.
[24]Win P P,Kyi P P,de Waele D. Effect of agro-ecosystem on the occurrence of the rice root-knot nematode Meloidogyne graminicola on rice in Myanmar[J]. Australasian Plant Pathology,2011,40(2):187-196.
[25]Mantelin S,Bellafiore S,Kyndt T. Meloidogyne graminicola:a major threat to rice agriculture[J]. Molecular Plant Pathology,2017,18(1):3-15.
[26]Nguyen P V,Bellafiore S,Petitot A S,et al. Meloidogyne incognita-rice (Oryza sativa) interaction:a new model system to study plant-root-knot nematode interactions in monocotyledons[J]. Rice,2014,7(1):23.
[27]Fernandez L,Cabasan M N,de Waele D. Life cycle of the rice root-knot nematode Meloidogyne graminicola at different temperatures under non-flooded and flooded conditions[J]. Archives of Phytopathology & Plant Protection,2014,47(9):1042-1049.
[28]Moens M,Perry R N. Migratory plant endoparasitic nematodes:a group rich in contrasts and divergence[J]. Annual Review of Phytopathology,2009,47(1):313-332.
[29]Ding Z,Namphueng J,He X F. First report of the cyst nematode(Heterodera elachista)on rice in Hunan Province,China[J]. Plant Disease,2012,96(1):151.
[30]Nicol P,Gill R,Fosu-Nyarko J,et al. De novo analysis and functional classification of the transcriptome of the root lesion nematode,pratylenchus thornei,after 454 GS FLX sequencing[J]. International Journal for Parasitology,2012,42(3):225-237.
[31]Kyndt T,Nahar K,Haegeman A,et al. Comparing systemic defence-related gene expression changes upon migratory and sedentary nematode attack in rice[J]. Plant Biology,2012,14(1):73-82.
[32]Kyndt T,Denil S,Haegeman A,et al. Transcriptional reprogramming by root knot and migratory nematode infection in rice[J]. The New Phytologist,2012,196(3):887-900.
[33]Bauters L,Haegeman A,Kyndt T,et al. Analysis of the transcriptome of Hirschmanniella oryzae to explore potential survival strategies and host-nematode interactions[J]. Molecular Plant Pathology,2014,15(4):352-363.
[34]Petitot A S,Dereeper A,Agbessi M,et al. Dual RNA-seq reveals Meloidogyne graminicola transcriptome and candidate effectors during the interaction with rice plants[J]. Molecular Plant Pathology,2016,17(6):860-874.
[35]Haegeman A,Bauters L,Kyndt T,et al. Identification of candidate effector genes in the transcriptome of the rice root knot nematode Meloidogyne graminicola[J]. Molecular Plant Pathology,2013,14(4):379-390.
[36]Wang F,Li D,Wang Z,et al. Transcriptomic analysis of the rice white tip nematode,Aphelenchoides besseyi (Nematoda:Aphelenchoididae)[J]. PLoS One,2014,9(3):e91591.
[37]Ravichandra N G. Genetics of nematode parasitism,horticultural nematology[M]. Springer India,2014:239-292.
[38]Haegeman A,Mantelin S,Jones J T,et al. Functional roles of effectors of plant-parasitic nematodes[J]. Gene,2012,492(1):19-31.
[39]Davis E L,Hussey R S,Baum T J,et al. Nematode parasitism genes[J]. Annual Review of Phytopathology,2000,38(1):365-396.
[40]Win J,Chaparro-Garcia A,Belhaj K,et al. Effector biology of plant-associated organisms:concepts and perspectives[J]. Cold Spring Harbor Symposia on Quantitative Biology,2012,77:235-247.
[41]Hogenhout S A,van der Hoorn R A,Terauchi R,et al. Emerging concepts in effector biology of plant-associated organisms[J]. Molecular Plant-Microbe Interactions,2009,22(2):115-122.
[42]Rybarczyk-Mydlowska K,Maboreke H R,van Megen H,et al. Rather than by direct acquisition via lateral gene transfer,GHF5 cellulases were passed on from early Pratylenchidae to root-knot and cyst nematodes[J]. BMC Evolutionary Biology,2012,12:221.
[43]Haegeman A,Kyndt T,Gheysen G. The role of pseudo-endoglucanases in the evolution of nematode cell wall-modifying proteins[J]. Journal of Molecular Evolution,2010,70(5):441-452.
[44]Djamei A,Schipper K,Rabe F,et al. Metabolic priming by a secreted fungal effector[J]. Nature,2011,478(7369):395.
[45]Kyndt T,Denil S,Bauters L,et al. Systemic suppression of the shoot metabolism upon rice root nematode infection[J]. PLoS One,2014,9(9):e106858.
[46]Ji H,Gheysen G,Denil S,et al. Transcriptional analysis through RNA sequencing of giant cells induced by Meloidogyne graminicola in rice roots[J]. Journal of Experimental Botany,2013,64(12):3885-3898.
[47]Lin B,Zhuo K,Chen S,et al. A novel nematode effector suppresses plant immunity by activating host reactive oxygen species-scavenging system[J]. The New Phytologist,2016,209(3):1159-1173.
[48]Huang W K,Ji H L,Gheysen G,et al. Thiamine-induced priming against root-knot nematode infection in rice involves lignification and Hydrogen peroxide Generation[J]. Molecular Plant Pathology,2016,17(4):614-624.
[49]张绍升,谢志成,刘国坤,等. 潜根线虫侵染对水稻早衰的影响[J]. 福建农林大学学报(自然科学版),2011,40(6):566-569.
[50]Bari R,Jones J D. Role of plant hormones in plant defence responses[J]. Plant Molecular Biology,2009,69(4):473-488.
[51]López M A,Bannenberg G,Castresana C. Controlling hormone signaling is a plant and pathogen challenge for growth and survival[J]. Current Opinion in Plant Biology,2008,11(4):420-427.
[52]Chanclud E,Morel J B. Plant hormones:a fungal point of view[J]. Molecular Plant Pathology,2016,17(8):1289-1297.
[53]Robert-Seilaniantz A,Navarro L,Bari R,et al. Pathological hormone imbalances[J]. Current Opinion in Plant Biology,2007,10(4):372-379.
[54]Feys B J,Parker J E. Interplay of signaling pathways in plant disease resistance[J]. Trends in Genetics,2000,16(10):449-455.
[55]Kunkel B N,Brooks D M. Cross talk between signaling pathways in pathogen defense[J]. Current Opinion in Plant Biology,2002,5(4):325-331.
[56]Li R,Rashotte A M,Singh N K,et al. Integrated signaling networks in plant responses to sedentary endoparasitic nematodes:a perspective[J]. Plant Cell Reports,2015,34(1):5-22.
[57]de Vleesschauwer D,Xu J,Hfte M. Making sense of hormone-mediated defense networking:from rice to Arabidopsis[J]. Frontiers in Plant Science,2014,5:611.
[58]Nahar K,Kyndt T,de Vleesschauwer D,et al. The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice[J]. Plant Physiology,2011,157(1):305-316.
[59]Kyndt T,Fernandez D,Gheysen G. Plant-parasitic nematode infections in rice:molecular and cellular insights[J]. Annual Review of Phytopathology,2014,52:135-153.
[60]Owen K J,Green C D,Deverall B J. A benzothiadiazole applied to foliage reduces development and egg deposition by Meloidogyne spp. in glasshouse-grown grapevine roots[J]. Australasian Plant Pathology,2002,31(1):47-53.
[61]Nandi B,Kundu K,Banerjee N,et al. Salicylic acid-induced suppression of Meloidogyne incognita infestation of okra and cowpea[J]. Nematology,2003,5(5):747-752.
[62]Branch C,Hwang C F,Navarre D A,et al. Salicylic acid is part of the Mi-1-mediated defense response to root-knot nematode in tomato[J]. Molecular Plant-Microbe Interactions,2004,17(4):351-356.
[63]Wubben M J,Jin J,Baum T J. Cyst nematode parasitism of Arabidopsis thaliana is inhibited by salicylic acid(SA) and elicits uncoupled SA-independent pathogenesis-related gene expression in Roots[J]. Molecular Plant-Microbe Interactions,2008,21(4):424-432.
[64]Nahar K,Kyndt T,Nzogela Y B,et al. Abscisic acid interacts antagonistically with classical defense pathways in rice-migratory nematode interaction[J]. The New Phytologist,2012,196(3):901-913.
[65]Moslemi F,Fatemy S,Bernard F. Inhibitory effects of salicylic acid on Meloidogyne javanica reproduction in tomato plants[J]. Spanish Journal of Agricultural Research,2016,14(1):e1001.
[66]de Vleesschauwer D,Yang Y,Cruz C V,et al. Abscisic acid-induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling[J]. Plant Physiology,2010,152(4):2036-2052.
[67]Ton J,Flors V,Mauch-Mani B. The multifaceted role of ABA in disease resistance[J]. Trends in Plant Science,2009,14(6):310-317.
[68]Asselbergh B,de Vleesschauwer D,Hofte M. Global switches and fine-tuning-ABA modulates plant pathogen defense[J]. Molecular Plant-Microbe Interactions,2008,21(6):709-719.
[69]Xiong L,Yang Y. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase[J]. The Plant Cell,2003,15(3):745-759.
[70]Torres-Zabala T M,Truman W,Bennett M H,et al. Pseudomonas syringae pv.tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease[J]. The EMBO Journal,2007,26(5):1434-1443.
[71]Yasuda M,Ishikawa A,Jikumaru Y,et al. Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis[J]. The Plant Cell,2008,20(6):1678-1692.
[72]Jiang C J,Shimono M,Sugano S,et al. Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice-Magnaporthe grisea interaction[J]. Molecular Plant-Microbe Interactions,2010,23(6):791-798.
[73]Pieterse C M,van der Does D,Zamioudis C,et al. Hormonal modulation of plant immunity[J]. Annual Review of Cell and Developmental Biology,2012,28:489-521.
[74]Nahar K,Kyndt T,Hause B,et al. Brassinosteroids suppress rice defense against root-knot nematodes through antagonism with the jasmonate pathway[J]. Molecular Plant-microbe Interactions:MPMI,2013,26(1):106-115.
[75]金娜,刘倩,简恒. 植物寄生线虫生物防治研究新进展[J]. 中国生物防治学报,2015,31(5):789-800.
[76]江绪文,李贺勤. 植物内生菌防治植物寄生线虫的研究进展[J]. 生物技术通报,2014(9):7-12.
[77]Zhang C,Xie H,Xu C L,et al. Differential expression of Rs-eng-1b in two populations of Radopholus similis (Tylenchida:Pratylecnchidae) and its relationship to pathogenicity[J]. European Journal of Plant Pathology,2012,133(4):899-910.
[78]Maier T R,Hewezi T,Peng J,et al. Isolation of whole esophageal gland cells from plant-parasitic nematodes for transcriptome analyses and effector identification[J]. Molecular Plant-Microbe Interactions,2013,26(1):31-35.
[79]Zhang C,Xie H,Cheng X,et al. Molecular identification and functional characterization of the fatty acid- and retinoid-binding protein gene Rs-far-1 in the burrowing nematode Radopholus similis (Tylenchida:Pratylenchidae)[J]. PLoS One,2015,10(3):e0118414.

相似文献/References:

[1]马旭俊,刘春娟,吕世博,等.绿色荧光蛋白基因在水稻遗传转化中的应用[J].江苏农业科学,2013,41(04):35.
[2]李岳峰,居立海,张来运,等.水分胁迫下丛枝菌根对水稻/绿豆间作系统 作物生长和氮磷吸收的影响[J].江苏农业科学,2013,41(04):58.
[3]崔月峰,孙国才,王桂艳,等.不同施氮水平和前氮后移措施对水稻产量 及氮素利用率的影响[J].江苏农业科学,2013,41(04):66.
[4]张其蓉,宋发菊,田进山,等.长江中下游稻区水稻区域试验品种抗稻瘟病鉴定与评价[J].江苏农业科学,2013,41(04):92.
[5]王麒,张小明,卞景阳,等.不同插秧密度对黑龙江省第二积温带水稻产量及产量构成的影响[J].江苏农业科学,2013,41(05):60.
 Wang Qi,et al.Effect of different transplanting density on yield and yield component of rice in second temperature zone of Heilongjiang Province[J].Jiangsu Agricultural Sciences,2013,41(16):60.
[6]张国良,张森林,丁秀文,等.基质厚度和含水量对水稻育秧的影响[J].江苏农业科学,2013,41(05):62.
 Zhang Guoliang,et al.Effects of substrate thickness and water content on growth of rice seedlings[J].Jiangsu Agricultural Sciences,2013,41(16):62.
[7]赵忠宝,朱清海.稻-蟹-鳅生态系统的能值分析[J].江苏农业科学,2013,41(05):349.
 Zhao Zhongbao,et al.Emergy analysis of paddy-crab-loach ecosystem[J].Jiangsu Agricultural Sciences,2013,41(16):349.
[8]杨红福,姚克兵,束兆林,等.甲氧基丙烯酸酯类杀菌剂对水稻恶苗病的田间药效[J].江苏农业科学,2014,42(12):166.
 Yang Hongfu,et al.Field efficacy of strobilurin fungicides against rice bakanae disease[J].Jiangsu Agricultural Sciences,2014,42(16):166.
[9]唐成,陈露,安敏敏,等.稻瘟病诱导水稻幼苗叶片氧化还原系统的特征谱变化[J].江苏农业科学,2014,42(12):141.
 Tang Cheng,et al.Characteristic spectral changes of redox homeostasis system in rice seedling leaves induced by rice blast[J].Jiangsu Agricultural Sciences,2014,42(16):141.
[10]万云龙.优质水稻—春甘蓝轮作高效栽培模式[J].江苏农业科学,2014,42(12):90.
 Wan Yunlong.Efficient cultivation mode of high quality rice-spring cabbage rotation[J].Jiangsu Agricultural Sciences,2014,42(16):90.

备注/Memo

备注/Memo:
收稿日期:2017-01-12
基金项目:国家自然科学基金(编号:31260423);江西农业大学研究生创新专项资金(编号:NDYC2016-S003)。
作者简介:张磊(1993—)男,安徽亳州人,硕士研究生,主要从事植物病理学研究。E-mail:zl.jxau@foxmail.com。
通信作者:崔汝强,博士,副教授,主要从事植物病理学研究。E-mail:cuiruqiang@jxau.edu.cn。
更新日期/Last Update: 2017-08-20