|本期目录/Table of Contents|

[1]陈薇薇,陈涛,杨平,等.共存Cu2+影响下土霉素在黑土上的吸附行为[J].江苏农业科学,2017,45(18):240-244.
 Chen Weiwei,et al.Effect of coexistent Cu2+ on adsorption of oxytetracycline (OTC) onto black soil[J].Jiangsu Agricultural Sciences,2017,45(18):240-244.
点击复制

共存Cu2+影响下土霉素在黑土上的吸附行为(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第45卷
期数:
2017年18期
页码:
240-244
栏目:
资源与环境
出版日期:
2017-09-20

文章信息/Info

Title:
Effect of coexistent Cu2+ on adsorption of oxytetracycline (OTC) onto black soil
作者:
陈薇薇1 陈涛2 杨平1 郭平1 张文卿1 张馨元3
1.吉林大学环境与资源学院/地下水资源与环境教育部重点实验室/水资源与水环境吉林省重点实验室,吉林长春 130021;
2.国网吉林省电力有限公司电力科学研究院,吉林长春 130021; 3.吉林省社会科学院日本研究所,吉林长春 130033
Author(s):
Chen Weiweiet al
关键词:
土霉素(OTC)共有Cu2+吸附黑土热力学模型
Keywords:
-
分类号:
X53
DOI:
-
文献标志码:
A
摘要:
采用批量平衡吸附法研究了重金属Cu2+对四环素类抗生素土霉素(OTC)在东北地区典型黑土上吸附热力学的影响,以及Cu2+共存时溶液初始pH值和OTC添加顺序对OTC吸附的影响。结果表明,Freundlich吸附模型对不同浓度Cu2+影响下OTC在黑土上的吸附热力学过程能够进行较好地描述(R≥0.990,P<0.01),共存Cu2+能够促进黑土对OTC的吸附,且促进作用随着Cu2+浓度的增加而增大,OTC吸附量大小顺序符合100 mg/L Cu2++OTC>50 mg/L Cu2++OTC>OTC。pH值可以通过改变OTC的电荷状态显著影响OTC在黑土上的吸附,OTC的吸附量随着pH值的升高而降低,当pH值≤6.90时OTC的吸附量下降趋势不显著,当pH值>6.90时其吸附量显著下降,尤其当pH值>9.56时,OTC的吸附量急剧下降。共存Cu2+并未改变OTC在不同pH值条件下的吸附规律,但促进了OTC在黑土上的吸附,且促进作用与Cu2+浓度成正比。Freundlich吸附模型对Cu2+共存时OTC添加顺序对黑土吸附OTC的热力学过程也能进行较好地描述(R≥0.936,P<0.01),黑土对OTC的吸附能力随着OTC添加顺序的不同而改变,OTC吸附量大小顺序符合TOTC+Cu(二者同时加入)>TOTC(先加入OTC)>Cu(先加入Cu2+)。
Abstract:
-

参考文献/References:

[1]Kümmerer K. Antibiotics in the aquatic environment—a review—part II.[J]. Chemosphere,2009,75(4):435-441.
[2]Sarmah A K,Meyer M T,Boxall A B. A global perspective on the use,sales,exposure pathways,occurrence,fate and effects of veterinary antibiotics (VAs) in the environment[J]. Chemosphere,2006,65(5):725-759.
[3]Parolo M E,Avena M J,Pettinari G R,et al. Influence of Ca2+ on tetracycline adsorption on montmorillonite[J]. Journal of Colloid and Interface Science,2012,368(1):420-426.
[4]Peak N,Knapp C W,Yang R K,et al. Abundance of six tetracycline resistance genes in wastewater lagoons at cattle feedlots with different antibiotic use strategies[J]. Environmental Microbiology,2007,9(1):143-151.
[5]Bound J P,Voulvoulis N. Pharmaceuticals in the aquatic environment—a comparison of risk assessment strategies[J]. Chemosphere,2004,56(11):1143-1155.
[6]Jia D A,Zhou D M,Wang Y J,et al. Adsorption and cosorption of Cu(Ⅱ) and tetracycline on two soils with different characteristics[J]. Geoderma,2008,146(1/2):224-230.
[7]Yang Y,Hu X,Zhao Y,et al. Decontamination of tetracycline by thiourea-dioxide-reduced magnetic graphene oxide:effects of pH,ionic strength,and humic acid concentration[J]. Journal of Colloid and Interface Science,2017,495:68-77.
[8]庞志华,柯滨,罗沛聪,等. 东北地区畜禽养殖业污染物总量减排对策分析[J]. 环境保护科学,2012,38(3):59-63.
[9]李国傲,陈振贺,刘志富,等. 北京地区潮土对土霉素的吸附特性研究[J]. 现代地质,2015,29(2):377-382.
[10]鲍艳宇,周启星,万莹,等. 土壤有机质对土霉素在土壤中吸附-解吸的影响[J]. 中国环境科学,2009,29(6):651-655.
[11]常娟,白玲,冷婧,等. 江西省典型水稻土对铜的吸附解吸特性研究[J]. 江西农业大学学报,2016,38(1):207-214.
[12]景丽洁,王敏. 不同类型土壤对重金属的吸附特性[J]. 生态环境学报,2008,17(1):245-248.
[13]陈少海,陈勇,刘辉,等. 离子强度对铁质砖红壤铜离子连续解吸的影响[J]. 土壤学报,2014,51(6):1290-1297.
[14]Wu H,Xie H,He G,et al. Effects of the pH and anions on the adsorption of tetracycline on iron-montorillonite[J]. Applied Clay Science,2016,119:161-169.
[15]Zhao Y P,Tan Y Y,Guo Y,et al. Interactions of tetracycline with Cd (Ⅱ),Cu (Ⅱ) and Pb (Ⅱ) and their cosorption behavior in soils[J]. Journal of Colloid and Interface Science,2013,180:206-213.
[16]Zhang Z,Sun K,Gao B,et al. Adsorption of tetracycline on soil and sediment:effects of pH and the presence of Cu(Ⅱ)[J]. Journal of Hazardous Materials,2011,190(1/2/3):856-862.
[17]Bui T X,Choi H. Influence of Ionic strength,anions,cations,and natural organic matter on the adsorption of pharmaceuticals to silica[J]. Chemosphere,2010,80(7):681-686.
[18]鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科学技术出版社,2000.
[19]张辉,张佳宝,赵炳梓,等. 高温高压间歇灭菌对中国典型土壤性质的影响[J]. 土壤学报,2011,48(3):540-548.
[20]Chen W W,Kang C L,Li Y E,et al. Effect of root exudates on pentachlorophenol adsorption by soil and its main chemical components[J]. International Journal of Environment and Pollution,2013,52(1/2):1-14.
[21]Sassman S A,Lee L S. Sorption of three tetracyclines by several soils:assessing the role of pH and cation exchange[J]. Environmental Science & Technology,2005,39(19):7452-7459.
[22]齐会勉,吕亮,乔显亮. 抗生素在土壤中的吸附行为研究进展[J]. 土壤,2009,41(5):703-708.
[23]Mackay A A,Canterbury B. Oxytetracycline sorption to organic matter by metal-bridging[J]. Journal of Environmental Quality,2005,34(6):1964-1971.
[24]Pils J R,Laird D A. Sorption of tetracycline and chlortetracycline on K- and Ca-saturated soil clays,humic substances,and clay-humic complexes[J]. Environmental Science & Technology,2007,41(6):1928-1933.
[25]万莹,鲍艳宇,周启星. 土壤有机质和镉对金霉素吸附-解吸的影响[J]. 环境科学,2010,31(12):3050-3055.
[26]刘廷凤,陈成,王涛,等. 铜对两种农药在砂土上吸附的影响[J]. 环境科学与技术,2010,33(2):19-22.
[27]陈励科,马婷婷,潘霞,等. 复合污染土壤中土霉素的吸附行为及其对土壤重金属解吸影响的研究[J]. 土壤学报,2015,52(1):104-111.
[28]Wan Y,Bao Y,Zhou Q. Simultaneous adsorption and desorption of cadmium and tetracycline on cinnamon soil[J]. Chemosphere,2010,80(7):807-812.
[29]孟丽红,夏星辉,余晖,等. 多环芳烃在黄河水体颗粒物上的表面吸附和分配作用特征[J]. 环境科学,2006,27(5):892-897.
[30]Wang Y J,Jia D A,Sun R J,et al. Adsorption and cosorption of tetracycline and copper(Ⅱ) on montmorillonite as affected by solution pH[J]. Environmental Science & Technology,2008,42(9):3254-3259.
[31]Figueroa R A,Leonard A,Mackay A A. Modeling tetracycline antibiotic sorption to clays[J]. Environmental Science & Technology,2004,38(2):476-483.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2017-03-16
基金项目:国家自然科学基金(编号:40971248)。
作者简介:陈薇薇(1982—),女,吉林长春人,博士,工程师,从事环境污染修复技术与机理研究。E-mail:chenvv@jlu.edu.cn。
更新日期/Last Update: 2017-09-20