|本期目录/Table of Contents|

[1]郭丽红,徐娅,郤秋霞,等.拟南芥热激因子AtHsfA1a在低温胁迫下对细胞程序性死亡中Caspase-3活性的影响[J].江苏农业科学,2017,45(21):24-27.
 Guo Lihong,et al.Effects of heat shock factor AtHsfA1a on Caspase-3 enzyme activity during programmed cell death under low temperature stress in Arabidopsis thaliana[J].Jiangsu Agricultural Sciences,2017,45(21):24-27.
点击复制

拟南芥热激因子AtHsfA1a在低温胁迫下对细胞程序性死亡中Caspase-3活性的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第45卷
期数:
2017年第21期
页码:
24-27
栏目:
生物技术
出版日期:
2017-11-05

文章信息/Info

Title:
Effects of heat shock factor AtHsfA1a on Caspase-3 enzyme activity during programmed cell death under low temperature stress in Arabidopsis thaliana
作者:
郭丽红124 徐娅2 郤秋霞2 李念2 檀文涛2 张学兰2
1.昆明学院/云南省高校特色生物资源开发与利用重点实验室,云南昆明 650214; 2.昆明学院/昆明市滇池水生态恢复重点实验室,
云南昆明 650214;3.昆明学院生命科学与技术系,云南昆明 650214; 4.昆明学院农学院,云南昆明 650214
Author(s):
Guo Lihonget al
关键词:
拟南芥热激因子AtHsfA1a低温胁迫细胞程序性死亡Caspase-3活性
Keywords:
-
分类号:
Q945.78
DOI:
-
文献标志码:
A
摘要:
为了研究拟南芥热激因子AtHsfA1a对低温胁迫下细胞程序性死亡(programmed cell death,简称PCD)中含半胱氨酸的天冬氨酸蛋白水解酶(cysteinyl aspartate specific protease,简称Caspase)活性的影响,进一步确定拟南芥热激因子AtHsfA1a与低温胁迫中PCD的关系。以热激因子AtHsfA1a不同基因型(野生型、基因沉默型)的拟南芥为材料,首先获得单细胞,于4 ℃处理1 h后,测定热激因子AtHsfA1a的表达量,发现基因沉默型中AtHsfA1a的表达量低于野生型。接着用4′,6-二脒基-2-苯基吲哚(4′,6-diamidino-2-phenylindole,简称DAPI)进行染色,在荧光显微镜下观察细胞形态,结果表明,低温胁迫后野生型未出现凋亡小体,基因沉默型的细胞出现了细胞凋亡小体。最后根据荧光底物Ac-DEVD-pNA的断裂程度测定Caspase-3活性,结果发现,低温处理后的拟南芥Caspase-3活性明显增强,而AtHsfA1a基因沉默型拟南芥Caspase-3活性比野生型拟南芥的高,说明低温胁迫下拟南芥AtHsfA1a能够抑制Caspase-3蛋白酶的活性。研究结果初步表明,在低温胁迫下拟南芥热激因子AtHsfA1a可以通过抑制 Caspase-3 蛋白酶的活性而对细胞程序性死亡有一定的抑制作用,这对于揭示植物耐逆境反应机制具有重要意义。
Abstract:
-

参考文献/References:

[1]Akkerfelt M,Morimoto R I,Sistonen L. Heat shock factors:integrators of cell stress,development and lifespan[J]. Nature Reviews:Molecular Cell Biology,2010,11(8):545-555.
[2]Kotak S,Larkindale J,Lee U,et al.Complexity of the heat stress response in plants[J]. Current Opinion in Plant Biology,2007,10(3):310-316.
[3]von Koskull-Dring P,Scharf K,Nover L. The diversity of plant heat stress transcription factors[J]. Trends Plant Sci,2007,12(10):452-457.
[4]Li M,Doll J,Weckermann K,et al. Detection of in vivo interactions between Arabidopsis class A-HSFs,using a novel BiFC fragment,and identification of novel class B-HSF interacting proteins[J]. Eur J Cell Biol,2010,89(2/3):126-132.
[5]Liu H C,Liao H T,Charng Y Y. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis[J]. Plant Cell Environ,2011,34(5):738-751.
[6]Nover L,Bharti K,Dring P,et al. Arabidopsis and the heat stress transcription factor world:how many heat stress transcription factors do we need?[J]. Cell Stress Chaperones,2001,6(3):177-189.
[7]Dring P,Treuter E,Kistner C,et al. The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2[J]. Plant Cell,2000,12(2):265-278.
[8]PennellR I,Lamb C. Programmed cell death in plants[J]. Plant Cell,1997,9 (7):1157-1168.
[9]Lin J,Wang Y,Wang G. Salt stress-induced programmed cell death in tobacco protoplasts is mediated by reactive oxygen species and mitochondrial permeability transition pore status[J]. J Plant Physiol,2006,163(7):731-739.
[10]Xu C J,Chen K S,Ferguson I B. Programmed cell death features in apple suspension cells under low oxygen culture[J]. Bioscience & Biotechnology,2004,5(2):137-143
[11]Gechev T S,Van Breusegem G F,Stone J M,et al. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death[J]. BioEssays,2006,28(11):1091-1101.
[12]Gechev T S,Hille J. Hydrogen peroxide as a signal controlling plant programmed cell death[J]. J Cell Biol,2005,168(1):17-20.
[13]Thonel A D,Mezger V,Garrido C. Implication of heat shock factors in tumorigenesis:therapeutical potential[J]. Cancers,2011,3:1158-1181.
[14]Jacobs A T,Marnett L J. HSF1-mediated BAG3 expression attenuates apoptosis in 4-hydroxynonenal-treated colon cancer cells via stabilization of anti-apoptotic Bcl-2 proteins[J]. J Biol Chem,2009,284(14):9176-9183.
[15]Beere H M. ‘The stress of dying’:the role of heat shock proteins in the regulation of apoptosis[J]. J Cell Sci,2004,117:2641-2651.
[16]Ahn S G,Thiele D J. Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress[J]. Genes and Development,2003,17(4):516-528.
[17]Guo L H,Cai J,Yu Z X,et al. Influence of High Temperature on the Expression of Arabidopsis Heat Shock Transcription Factor AtHsfA1a[J]. Agricultural Biotechnology,2013,2(1/2):13-15
[18]Bradford M M.A rapid and sensitive method for the quantification of microdram quantities of protein sutilizing the principle of protein-dye-binding[J]. AnalytBiochem,1976,44:276-287.
[19]Zhang L,Jiang H,Gao X,et al. Heat shock transcription factor 1 inhibits H2O2-induced apoptosis via down-regulation of reactive oxygen species in cardiac myocytes[J]. Mol Cell Biochem,2011,347(1/2):21-28.

相似文献/References:

[1]王宏归,黄晨,姜雅,等.CONSTANS LIKE 7参与调控拟南芥的向地性以及侧根、子叶的发育[J].江苏农业科学,2015,43(12):48.
 Wang Honggui,et al.Study on CONSTANS LIKE 7 involved in regulating gravitropism and development of side root and cotyledon in Arabidopsis[J].Jiangsu Agricultural Sciences,2015,43(21):48.
[2]李雪,邵铁梅,安胜军.1种简单方便的拟南芥发芽诱导新技术[J].江苏农业科学,2015,43(12):51.
 LI Xue,et al.A simple and convenient technology for bud induction of Arabidopsis thaliana[J].Jiangsu Agricultural Sciences,2015,43(21):51.
[3]王琳,孙庆玲,刘辉,等.拟南芥缺失突变体at14a的比较转录组分析[J].江苏农业科学,2016,44(04):70.
 Wang Lin,et al.Comparative transcriptional analysis of mutant at14a of Arabidopsis thaliana[J].Jiangsu Agricultural Sciences,2016,44(21):70.
[4]韩蕾,李俊林,苏彦华.拟南芥突变体kea的表型分析及对生长素的响应特征[J].江苏农业科学,2016,44(06):30.
 Han Lei,et al.Phenotypic analysis of arabidopsis mutant kea and its response to exogenous auxin[J].Jiangsu Agricultural Sciences,2016,44(21):30.
[5]奈婕菲,程玉祥.一个杨树GDSL基因组织表达的特性及其在拟南芥异源的表达[J].江苏农业科学,2014,42(03):16.
 Nai Jiefei,et al.Tissue expression of a poplar GDSL gene and its heterologous expression analysis in Arabidopsis thaliana[J].Jiangsu Agricultural Sciences,2014,42(21):16.
[6]郭瑾,薛永来,杜道林.植物激素调控拟南芥根系发育的研究进展[J].江苏农业科学,2014,42(05):7.
 Guo Jin,et al.Research progress of phytohormones regulating root system development of Arabidopsis thaliana[J].Jiangsu Agricultural Sciences,2014,42(21):7.
[7]刘广志,陈炳佑,侍福梅.MAP18参与了脱落酸调控的拟南芥气孔关闭及根生长[J].江苏农业科学,2015,43(11):55.
 Liu Guangzhi,et al.MAP18 involved in stomatal closure and root growth of Arabidopsis thaliana regulated by abscisic acid[J].Jiangsu Agricultural Sciences,2015,43(21):55.
[8]姜上川,梅超,王小芳,等.PPR蛋白APPR6参与ABA调控拟南芥种子萌发与幼苗生长[J].江苏农业科学,2016,44(04):53.
 Jiang Shangchuan,et al.PPR protein APPR6 involved in ABA regulation of seed germination and seedling growth in Arabidopsis[J].Jiangsu Agricultural Sciences,2016,44(21):53.
[9]李静婷,赵旭耀,刘超凡,等.热胁迫对转TasHSP16.9拟南芥幼苗生长生理特性的影响[J].江苏农业科学,2016,44(10):113.
 Li Jingting,et al.Effects of heat stress on growth and physiological indices of TasHSP16.9 transgenic Arabidopsis thaliana seedlings[J].Jiangsu Agricultural Sciences,2016,44(21):113.
[10]郝东利,杨顺瑛,黄亚楠,等.拟南芥铵转运蛋白AtAMT1.3的电生理功能[J].江苏农业科学,2017,45(08):36.
 Hao Dongli,et al.Electrophysiological study on Arabidopsis ammonium transporter AtAMT1.3[J].Jiangsu Agricultural Sciences,2017,45(21):36.

备注/Memo

备注/Memo:
收稿日期:2016-06-02
基金项目:国家自然科学基金(编号:31260061、31060039);云南省高校特色生物资源开发与利用重点实验室项目(编号:GXZD201601)。
作者简介:郭丽红(1971—),女,云南大理人,博士,教授,主要从事植物生理学与分子生物学研究。E-mail:guolihong7122@163.com。
更新日期/Last Update: 2017-11-05