|本期目录/Table of Contents|

[1]许换平,郭慧杰,张林,等.紫外线对小麦叶锈病病菌流行学因素的影响[J].江苏农业科学,2018,46(06):91-94.
 Xu Huanping,et al.Influence of ultraviolet radiation on epidemiology factors of wheat leaf rust disease[J].Jiangsu Agricultural Sciences,2018,46(06):91-94.
点击复制

紫外线对小麦叶锈病病菌流行学因素的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第46卷
期数:
2018年06期
页码:
91-94
栏目:
植物保护
出版日期:
2018-03-20

文章信息/Info

Title:
Influence of ultraviolet radiation on epidemiology factors of wheat leaf rust disease
作者:
许换平 郭慧杰 张林 闫红飞 孟庆芳
河北农业大学植物保护学院/国家北方山区农业工程技术研究中心/河北省农作物病虫害生物防治工程技术研究中心,河北保定 071000
Author(s):
Xu Huanpinget al
关键词:
紫外线小麦叶锈病病菌孢子萌发率潜育期侵染效率产孢量病斑扩展率AUDPC
Keywords:
-
分类号:
S435.121.4+3
DOI:
-
文献标志码:
A
摘要:
研究紫外线对小麦叶锈病病菌12-5-1384-1菌株和其诱变菌株1384-B-10-1孢子萌发率和流行学因素的影响。结果表明,紫外线对这2个菌株的影响表现一致,紫外线处理均使夏孢子萌发率降低,潜育期延长,侵染效率、产孢量及病情发展曲线下面积(area under disease-progress curve,简称AUDPC)显著下降,病斑扩展率最大值下降;紫外线处理后,与原始菌株相比,诱变菌株夏孢子的相对萌发率较高,侵染效率提高,病斑扩展率最大值延迟,产孢量和AUDPC升高。以上结果表明,诱变菌株对紫外线的容忍度比原始菌株大,即诱变菌株更适宜在紫外线越来越强的自然环境中生存。
Abstract:
-

参考文献/References:

[1]Kolmer J A. Genetics of resistance to wheat leaf rust[J]. Annual Review of Phytopathology,1996,34:435-455.
[2]董金皋. 农业植物病理学[M]. 2版.北京:中国农业出版社,2007:57-61.
[3]商鸿生,井金学,李振岐. 紫外线诱导小麦条锈菌毒性突变的研究[J]. 植物病理学报,1994,24(4):347-351.
[4]黄丽丽,王欣丽,康振生,等. 紫外线诱导小麦条锈菌毒性突变及突变体的RAPD分析[J]. 菌物学报,2005,24(3):400-406.
[5]王欣丽,朱飞,黄丽丽,等. 紫外线诱变对小麦条锈菌致病性突变的影响[J]. 核农学报,2009,23(3):375-379.
[6]Rotem J,Wooding B,Aylor D E. The role of solar radiation,especially ultraviolet,in the mortality of fungal spores[J]. Phytopathology,1985,75(5):510-514.
[7]Raviv M,Antignus Y. UV radiation effects on pathogens and insect pests of greenhouse-grown crops[J]. Photochemistry and Photobiology,2004,79(3):219-226.
[8]Manning W J,Tiedemann A V. Climate change:potential effects of increased atmospheric carbon dioxide(CO2),ozone(O3),and ultraviolet-B(UV-B)radiation on plant diseases[J]. Environmental Pollution,1995,88(2):219-245.
[9]Willocquet L,Colombet D,Rougier M,et al. Effects of radiation,especially ultraviolet B,on conidial germination and mycelial growth of grape powdery mildew[J]. European Journal of Plant Pathology,1996,102(5):441-449.
[10]吴杏春,林文雄,郭玉春,等. 植物对UV-B辐射增强响应的研究进展[J]. 中国生态农业学报,2001,9(3):52-55.
[11]Flor H H. Mutations in flax rust induced by ultraviolet radiation[J]. Science,1956,124(3227):888-889.
[12]Schwinghamer E A. The relation between radiation dose and the frequency of mutations for pathogenicity in Melampsora lini[J]. Phytopathology,1959,49:260-269.
[13]Maddison A C,Manners J G. Sunlight and viability of cereal rust uredospores[J]. Transactions of the British Mycological Society,1972,59(3):429-443.
[14]Johnson R,Priestley R H,Taylor E C. Occurrence of virulence in Puccinia striiformis for Compair wheat in England[J]. Cereal Rusts Bulletin,1978,6:11-13.
[15]鹿巍. 紫外线及EMS方法诱导小麦叶锈菌毒性突变研究[D]. 保定:河北农业大学,2007.
[16]方中达. 植病研究方法[M]. 3版.北京:中国农业出版社,1998:146-155.
[17]郭宏文,王艳,江成英,等. 酸性α-淀粉酶菌种的诱变选育[J]. 江苏农业科学,2016,44(3):356-357.
[18]任友花,王羿超,李娜,等. 微生物肥料高效解磷菌筛选及解磷机理探究[J]. 江苏农业科学,2016,44(12):537-540.
[19]Kielbassa C,Roza L,Epe B. Wavelenght dependence of oxidative DNA damage induced by UV and visible light[J]. Carcinogenesis,1997,18(4):811-816.
[20]Douki T,Reynaud-Angelin A,Cadet J,et al. Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation[J]. Biochemistry,2003,42(30):9221-9226.
[21]Schuch A P,Galhardo R D,de Lima-Bessa K M,et al. Development of a DNA-dosimeter system for monitoring the effects of solar-ultraviolet radiation[J]. Photochemical & Photobiological Sciences,2009,8(1):111-120.
[22]Cadet J,Mouret S,Ravanat J L,et al. Photoinduced damage to cellular DNA:direct and photosensitized reactions[J]. Photochemistry and Photobiology,2012,88(5):1048-1065.
[23]Karentz D. Beyond xeroderma pigmentosum:DNA damage and repair in an ecological context. A tribute to James E. Cleaver[J]. Photochemistry and Photobiology,2015,91(2):460-474.
[24]Cadet J,Douki T,Ravanat J. Oxidatively generated damage to cellular DNA by UVB and UVA radiation[J]. Photochemistry and Photobiology,2015,91(1):140-155.
[25]Rasanayagam M S,Paul N D,Royle D J,et al. Variation in responses of spores of Septoria tritici,and S. nodorum,to UV-B irradiation in vitro[J]. Mycological Research,1995,99(11):1371-1377.
[26]Nascimento ,Silva S H D,Marques E D R,et al. Quantification of cyclobutane pyrimidine dimers induced by UVB radiation in conidia of the fungi Aspergillus fumigatus,Aspergillus nidulans,Metarhizium acridum and Metarhizium robertsii[J]. Photochemistry & Photobiology,2010,86(6):1259-1266.
[27]Costa L B,Rangel D E,Morandi M A. Impact of UV-B radiation on Clonostachys rosea germination and growth[J]. World Journal of Microbiology and Biotechnology,2012,28(7):2497-2504.
[28]赵颖,祖艳群,李元. UV-B辐射增强对水稻稻瘟病菌(Magnaporthe grisea)生长和产孢的影响[J]. 农业环境科学学报,2010,29(增刊1):1-5.

相似文献/References:

[1]赵永田,赵惠燕.紫外线胁迫麦长管蚜DNA差异片段的克隆及序列功能分析[J].江苏农业科学,2017,45(05):102.
 Zhao Yongtian,et al.Cloning and functional analysis of genome mutation of Sitobion avenae (Fabricius) under ultraviolet stress[J].Jiangsu Agricultural Sciences,2017,45(06):102.

备注/Memo

备注/Memo:
收稿日期:2016-10-31
基金项目:国家重点基础研究发展计划(编号:2013CB127700)。
作者简介:许换平(1990—),女,山东济宁人,硕士研究生,主要从事小麦叶锈病研究。E-mail:xuhuanping901005@163.com。
通信作者:孟庆芳,硕士,副教授,主要从事小麦叶锈病研究。E-mail:qingfangmeng500@126.com。
更新日期/Last Update: 2018-03-20