|本期目录/Table of Contents|

[1]孙添,王国杰,娄丹,等.青藏高原区域多源土壤湿度数据的对比分析[J].江苏农业科学,2018,46(10):285-290.
 Sun Tian,et al.Contrastive analysis of multi-sensor soil moisture datasets of Tibetan Plateau[J].Jiangsu Agricultural Sciences,2018,46(10):285-290.
点击复制

青藏高原区域多源土壤湿度数据的对比分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第46卷
期数:
2018年10期
页码:
285-290
栏目:
资源与环境
出版日期:
2018-05-20

文章信息/Info

Title:
Contrastive analysis of multi-sensor soil moisture datasets of Tibetan Plateau
作者:
孙添1 王国杰23 娄丹2 Daniel2
1.南京信息工程大学大气科学学院,江苏南京 210044; 2.南京信息工程大学地理与遥感学院,江苏南京 210044;
3.气象灾害预报预警与评估协同创新中心,江苏南京 21004
Author(s):
Sun Tianet al
关键词:
青藏高原FY-3B土壤湿度LPRM对比分析
Keywords:
-
分类号:
S127;S152.7
DOI:
-
文献标志码:
A
摘要:
土壤水分是陆地水循环的重要组成部分,在陆地-大气界面的水汽和能量交换中起着重要的作用,是联系陆地水循环和能量循环的重要纽带。基于中国气象局风云三号卫星微波亮温数据反演了2012年青藏高原的土壤湿度数据,并与再分析资料、水文模型模拟数据和那曲地区观测资料进行对比分析。结果表明,与观测资料相比,遥感反演的土壤湿度数据在那曲地区的绝对量偏差较大,但是在时间变化方面优于再分析资料和水文模拟资料。在空间分布方面将陆地参数反演模型(land parameter retrieval model,简称LPRM)反演的土壤湿度数据与可变渗透量水文模型(variable infiltration capacity,简称VIC)反演的土壤湿度数据、欧洲中期天气预报中心再分析资料(ECMWF re-analysis interim,简称ERA-Interim)进行了比较,并计算了不同季节LPRM土壤湿度数据与其他2套数据的相关分布,结果发现LPRM土壤湿度数据在夏季与其他2套数据在青藏高原呈现很好的正相关关系,而在春季和秋季因为土壤水分冻结或者冻结的土壤水分融化所以相关性不高。这些表明夏季LPRM土壤湿度数据在青藏高原南部和东部地区数据质量较为可信,而其他地区有待进一步研究。
Abstract:
-

参考文献/References:

[1]Ye D. Some characteristics of the summer circulation over the Qinghai-Xizang (Tibet) Plateau and its neighborhood[J]. Bulletin of the American Meteorological Society,1980,62(1):14-19.
[2]Yeh T C. Some aspects of the thermal influences of the Qinghai-Tibetan plateau on the atmospheric circulation[J]. Archives for Meteorology Geophysics & Bioclimatology,1982,31(3):205-220.
[3]Wang J R,Schmugge T J. An empirical model for the complex dielectric permittivity of soils as a function of water content[J]. IEEE Transactions on Geoscience and Remote Sensing,1980,18(4):288-295.
[4]Quesada B,Vautard R,Yiou P,et al. Asymmetric European summer heat predictability from wet and dry southern winters and springs[J]. Nature Climate Change,2012,2(10):736-741.
[5]Seneviratne S I,Corti T,Davin E L,et al. Investigating soil moisture-climate interactions in a changing climate:a review[J]. Earth-Science Reviews,2010,99(3):125-161
[6]赵逸舟,马耀明,黄镇,等. 利用TRMM/TMI资料反演青藏高原中部土壤湿度[J]. 高原气象,2007,26(5):952-957.
[7]Shi J,Jiang L,Zhang L,et al. Physically based estimation of bare-surface soil moisture with the passive radiometers[J]. IEEE Transations on Geoscience and Remote Sensing,2006,44(11):3145-3153.
[8]刘强,杜今阳,施建成,等. 青藏高原表层土壤湿度遥感反演及其空间分布和多年变化趋势分析[J]. 中国科学:地球科学,2013(10):1677-1690.
[9]何媛,文军,张堂堂,等. 卫星微波遥感结合可见光遥感估算黄河源区土壤湿度研究[J]. 遥感技术与应用,2013,28(2):300-308.
[10]彭丽春,李万彪,刘辉志. FY-3A/MWRI数据反演半干旱地区土壤湿度的研究[J]. 北京大学学报(自然科学版),2011,47(5):797-804.
[11]Owe M,de Jeu R,Holmes T. Multisensor historical climatology of satellite-derived global land surface moisture[J]. Journal of Geophysical Research,2008,113:F01002.
[12]de Jeu R A M,Wagner W,Holmes T R H,et al. Global soil moisture patterns observed by space borne microwave radiometers and scatterometers[J]. Surveys in Geophysics,2008,29(4/5):399-420.
[13]杨军,董超华,卢乃锰,等. 中国新一代极轨气象卫星——风云三号[J]. 气象学报,2009,67(4):501-509.
[14]Liu Y Y,Dorigo W A,Parinussa R M,et al. Trend-preserving blending of passive and active microwave soil moisture retrievals[J]. Remote Sensing of Environment,2012,123(3):280-297.
[15]Chen Y,Yang K,Qin J,et al. Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau[J]. Journal of Geophysical Research Atmospheres,2013,118(10):4466-4475.
[16]Dee D P,Uppala S M,Simmons A J,et al. The ERA-Interim reanalysis:configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society,2011,137(656):553-597.
[17]Zhang X J,Tang Q,Pan M,et al. A long-term land surface hydrologic fluxes and states sataset for China[J]. Journal of Hydrometeorology,2014,15(5):2067-2084.
[18]Nijssen B,Schnur R,Lettenmaier D P. Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model,1980-93[J]. Journal of Climate,1999,14(8):1790-1808.
[19]Rodell M,Houser P R,Jambor U,et al. The global land data assimilation system[J]. Bulletin of the American Meteorological Society,2004,85(3):381-394.
[20]Pratola C,Barrett B,Gruber A,et al. Evaluation of a global soil moisture product from finer spatial resolution SAR data and ground measurements at Irish sites[J]. Remote Sensing,2014,6(9):8190-8219.
[21]Willmott C J,Matsuura K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance[J]. Climate Research,2005,30(1):79-82.
[22]Taylor K E. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research,2001,106(D7):7183-7192.
[23]Bi H,Ma J,Zheng W,et al. Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau[J]. Journal of Geophysical Research Atmospheres,2016,121(6):2658-2678.
[24]Mcnally A,Shukla S,Arsenault K R,et al. Evaluating ESA CCI soil moisture in East Africa[J]. International Journal of Applied Earth Observation & Geoinformation,2016,48:96-109.
[25]段克勤,姚檀栋,王宁练,等. 青藏高原南北降水变化差异研究[J]. 冰川冻土,2008,30(5):726-732.
[26]Xie C Y,Li M J,Zhang X Q,et al. Moisture transport features in summer and its rainfall effects over key region in southern margin of Qinghai-Xizang Plateau[J]. Plateau Meteorology,2015,34(2):327-337.
[27]刘晓东. 青藏高原隆升对亚洲季风形成和全球气候与环境变化的影响[J]. 高原气象,1999,18(3):321-332.
[28]李理,李栋梁. 青藏高原土壤湿度对黄河流域夏季降水的影响[C]//S4青藏高原及邻近地区天气气候影响. 北京:中国气象学会,2012.
[29]解承莹,李敏姣,张雪芹,等. 青藏高原南缘关键区夏季水汽输送特征及其与高原降水的关系[J]. 高原气象,2015,34(2):327-337.
[30]贾文雄. 祁连山气候的空间差异与地理位置和地形的关系[J]. 干旱区研究,2010,27(4):607-615.
[31]吴志勇,陆桂华,张建云,等. 基于VIC模型的逐日土壤含水量模拟[J]. 地理科学,2007,27(3):359-364.

相似文献/References:

[1]周虹,杨占武.青藏高原高寒沙区小叶锦鸡凋落物下土壤细菌菌群的DGGE分析[J].江苏农业科学,2015,43(12):353.
 Zhou Hong,et al.Analysis of bacterial flora in alpine sand soils under litter decomposition of Caragana microphylla in Tibetan Plateau by denaturing gradient gel electrophoresis analysis[J].Jiangsu Agricultural Sciences,2015,43(10):353.
[2]孙红梅,曹连宾,郝力壮,等.酵母培养物对牦牛瘤胃发酵及甲烷产量的影响[J].江苏农业科学,2015,43(03):177.
 Sun Hongmei,et al.Effects of yeast culture on yak rumen fermentation and methane emissions[J].Jiangsu Agricultural Sciences,2015,43(10):177.
[3]程长林,任爱胜,刘鉴洪,等.青藏高原社区畜牧业发展模式研究[J].江苏农业科学,2018,46(02):296.
 Cheng Changlin,et al.Study on community animal husbandry development model in Qinghai-Tibet Plateau[J].Jiangsu Agricultural Sciences,2018,46(10):296.
[4]王朋朋,王丹,王昊,等.长期氮、磷添加对青藏高原2种高寒草甸植物光合特性的影响[J].江苏农业科学,2019,47(13):325.
 Wang Pengpeng,et al.Effects of long-term nitrogen and phosphorus addition on photosynthetic characteristics of two alpine meadow plants[J].Jiangsu Agricultural Sciences,2019,47(10):325.
[5]赵龙妹.青藏高原土壤微生物多样性研究进展[J].江苏农业科学,2019,47(14):6.
 Zhao Longmei.Research progress on soil microbial diversity in Qinghai-Tibet Plateau[J].Jiangsu Agricultural Sciences,2019,47(10):6.
[6]杜军华,姜东伯,张津京,等.青藏高原东部22株栽培与野生羊肚菌的分子进化分析[J].江苏农业科学,2022,50(7):28.
 Du Junhua,et al.Molecular evolution analysis of 22 cultivated and wild Morchella strains in eastern Qinghai—Tibet Plateau[J].Jiangsu Agricultural Sciences,2022,50(10):28.

备注/Memo

备注/Memo:
收稿日期:2016-12-13
基金项目:国家自然科学基金重大计划(编号:91337108);国家自然科学基金面上项目(编号:41375099);国家自然科学基金国际合作项目(编号:41561124014);南京信息工程大学人才启动基金(编号:2241051301004)。
作者简介:孙添(1991—),男,江苏泰州人,硕士研究生,主要从事微波遥感研究。E-mail:1533364186@qq.com。
更新日期/Last Update: 2018-05-20