|本期目录/Table of Contents|

[1]侯瑞,金巧军.禾谷镰刀菌真菌毒素DON生物合成途径及调控机制研究进展[J].江苏农业科学,2018,46(17):9-13.
 Hou Rui,et al.Research progress of biosynthesis approach and regulatory mechanisms of Fusarium graminearum mycotoxin DON[J].Jiangsu Agricultural Sciences,2018,46(17):9-13.
点击复制

禾谷镰刀菌真菌毒素DON生物合成途径
及调控机制研究进展
(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第46卷
期数:
2018年第17期
页码:
9-13
栏目:
专论与综述
出版日期:
2018-09-05

文章信息/Info

Title:
Research progress of biosynthesis approach and regulatory mechanisms of Fusarium graminearum mycotoxin DON
作者:
侯瑞1 金巧军2
1.贵州大学林学院,贵州贵阳 550025; 2.西北农林科技大学植物保护学院,陕西杨凌 712100
Author(s):
Hou Ruiet al
关键词:
禾谷镰刀菌真菌毒素DON环境因子信号通路调控机制
Keywords:
-
分类号:
S432.1;S435.121.4+5
DOI:
-
文献标志码:
A
摘要:
禾谷镰刀菌是小麦赤霉病的主要病原菌,其侵染小麦主要产生脱氧雪腐镰刀菌烯醇(deoxynivalenol,简称DON)及其乙酰化衍生物(3Ac-DON/15Ac-DON)和玉米烯酮(zearalenone,简称ZEN)等真菌毒素。综述国内外对禾谷镰刀菌真菌毒素DON生物合成途径及调控机制的研究进展,对能够调控真菌毒素DON生物合成途径的pH值、碳源、氮源、过氧化物、信号通路等主要机制进行阐述,为控制禾谷镰刀菌真菌毒素提供参考,并为防治小麦赤霉病提供理论基础。
Abstract:
-

参考文献/References:

[1]Goswami R S,Kistler H C. Heading for disaster:Fusarium graminearum on cereal crops[J]. Molecular Plant Pathology,2004,5(6):515-525.
[2]Audenaert K,Vanheule A,Hofte M,et al. Deoxynivalenol:a major player in the multifaceted response of Fusarium to its environment[J]. Toxins,2014,6(1):1-19.
[3]Van De Walle J,Sergent T,Piront N,et al. Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis[J]. Toxicology and Applied Pharmacology,2010,245(3):291-298.
[4]Starkey D E,Ward T J,Aoki T,et al. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity[J]. Fungal Genetics and Biology,2007,44(11):1191-1204.
[5]Vujanovic V,Ben Mansour M. Chemotaxonomic diagnostics:combining sucrose-water agar with TLC to discriminate Fusarium graminearum 3-acetyl-DON and 15-acetyl-DON chemotypes[J]. Mycotoxin Research,2011,27(4):295-301.
[6]Qiu J B,Shi J R. Genetic relationships,carbendazim sensitivity and mycotoxin production of the Fusarium graminearum populations from maize,wheat and rice in eastern China[J]. Toxins,2014,6(8):2291-2309.
[7]Boenisch M J,Schafer W. Fusarium graminearum forms mycotoxin producing infection structures on wheat[J]. BMC Plant Biology,2011,11(1):110.
[8]Seong K Y,Pasquali M,Zhou X,et al. Global gene regulation by Fusarium transcription factors Tri6 and Tri10 reveals adaptations for toxin biosynthesis[J]. Molecular Microbiology,2009,72(2):354-367.
[9]McCormick S P,Harris L J,Alexander N J,et al. Tri1 in Fusarium graminearum encodes a P450 oxygenase[J]. Applied and Environmental Microbiology,2004,70(4):2044-2051.
[10]Menke J,Weber J,Broz K,et al. Cellular development associated with induced mycotoxin synthesis in the filamentous fungus Fusarium graminearum[J]. PLoS One,2013,8(5):e63077.
[11]Tokai T,Koshino H,Takahashi-Ando N,et al. Fusarium Tri4 encodes a key multifunctional cytochrome P450 monooxygenase for four consecutive oxygenation steps in trichothecene biosynthesis[J]. Biochemical and Biophysical Research Communications,2007,353(2):412-417.
[12]Tokai T,Takahashi-Ando N,Izawa M,et al. 4-O-acetylation and 3-O-acetylation of trichothecenes by trichothecene 15-O-acetyltransferase encoded by Fusarium Tri3[J]. Bioscience Biotechnology and Biochemistry,2008,72(9):2485-2489.
[13]Chandler E A,Simpson D R,Thomsett M A,et al. Development of PCR assays to Tri7 and Tri13 trichothecene biosynthetic genes,and characterisation of chemotypes of Fusarium graminearumFusarium culmorum and Fusarium cerealis[J]. Physiological and Molecular Plant Pathology,2003,62(6):355-367.
[14]McCormick S P,Alexander N J. Fusarium Tri8 encodes a trichothecene C-3 esterase[J]. Applied and Environmental Microbiology,2002,68(6):2959-2964.
[15]Menke J,Dong Y,Kistler H C. Fusarium graminearum Tri12p influences virulence to wheat and trichothecene accumulation[J]. Molecular Plant-Microbe Interactions,2012,25(11):1408-1418.
[16]Garvey G S,McCormick S P,Alexander N J,et al. Structural and functional characterization of TRI3 trichothecene 15-O-acetyltransferase from Fusarium sporotrichioides[J]. Protein Science,2009,18(4):747-761.
[17]Yin W,Keller N P. Transcriptional regulatory elements in fungal secondary metabolism[J]. Journal of Microbiology,2011,49(3):329-339.
[18]Tudzynski B. Nitrogen regulation of fungal secondary metabolism in fungi[J]. Frontiers in Microbiology,2014,5:656.
[19]Yu J H,Keller N. Regulation of secondary metabolism in filamentous fungi[J]. Annual Review of Phytopathology,2005,43(1):437-458.
[20]Kohut G,dm A L,Fazekas B,et al. N-starvation stress induced FUM gene expression and fumonisin production is mediated via the HOG-type MAPK pathway in Fusarium proliferatum[J]. International Journal of Food Microbiology,2009,130(1):65-69.
[21]Studt L,Humpf H U,Tudzynski B. Signaling governed by G proteins and cAMP is crucial for growth,secondary metabolism and sexual development in Fusarium fujikuroi[J]. PLoS One,2013,8(2):e58185.
[22]Gardiner D M,Osborne S,Kazan K,et al. Low pH regulates the production of deoxynivalenol by Fusarium graminearum[J]. Microbiology,2009,155(9):3149-3156.
[23]Merhej J,Boutigny A,Pinson-Gadais L,et al. Acidic pH as a determinant of TRI gene expression and trichothecene B biosynthesis in Fusarium graminearum[J]. Food Additives and Contaminants Part A Chemistry Analysis Control Exposure and Risk Assessment Food additives and Contaminants,2010,27(5):710-717.
[24]Merhej J,Richard-Forget F,Barreau C. The pH regulatory factor Pac1 regulates Tri gene expression and trichothecene production in Fusarium graminearum[J]. Fungal Genetics and Biology,2011,48(3):275-284.
[25]Ruiz B,Chavez A,Forero A,et al. Production of microbial secondary metabolites:regulation by the carbon source[J]. Critical Reviews in Microbiology,2010,36(2):146-167.
[26]Jiao F,Kawakami A,Nakajima T. Effects of different carbon sources on trichothecene production and Tri gene expression by Fusarium graminearum in liquid culture[J]. Fems Microbiology Letters,2008,285(2):212-219.
[27]Gardiner D M,Kazan K,Manners J M. Nutrient profiling reveals potent inducers of trichothecene biosynthesis in Fusarium graminearum[J]. Fungal Genetics and Biology,2009,46(8):604-613.
[28]Hou R,Jiang C,Zheng Q,et al. The AreA transcription factor mediates the regulation of deoxynivalenol (DON) synthesis by ammonium and cyclic adenosine monophosphate (cAMP) signalling in Fusarium graminearum[J]. Molecular Plant Pathology,2015,16(9):987-999.
[29]Min K,Shin Y,Son H,et al. Functional analyses of the nitrogen regulatory gene areA in Gibberella zeae[J]. Fems Microbiology Letters,2012,334(1):66-73.
[30]Giese H,Sondergaard T E,Sorensen J L. The AreA transcription factor in Fusarium graminearum regulates the use of some nonpreferred nitrogen sources and secondary metabolite production[J]. Fungal Biology,2013,117(11/12):814-821.
[31]Nasmith C G,Walkowiak S,Wang L,et al. Tri6 is a global transcription regulator in the phytopathogen Fusarium graminearum[J]. PLoS Pathogen,2011,7(9):e1002266.
[32]Audenaert K,Callewaert E,Hofte M,et al. Hydrogen peroxide induced by the fungicide prothioconazole triggers deoxynivalenol (DON) production by Fusarium graminearum[J]. BMC Microbiology,2010,10(1):112.
[33]Ilgen P,Hadeler B,Maier F J,et al. Developing kernel and rachis node induce the trichothecene pathway of Fusarium graminearum during wheat head infection[J]. Molecular Plant-Microbe Interactions,2009,22(8):899-908.
[34]Jiang C,Zhang S J,Zhang Q,et al. FgSKN7 and FgATF1 have overlapping functions in ascosporogenesis,pathogenesis and stress responses in Fusarium graminearum[J]. Environmental Microbiology,2015,17(4):1245-1260.
[35]Montibus M,Ducos C,Bonnin-Verdal M N,et al. The bZIP transcription factor Fgap1 mediates oxidative stress response and trichothecene biosynthesis but not virulence in Fusarium graminearum[J]. PLoS one,2013,8(12):e83377.
[36]Wang C F,Zhang S J,Hou R,et al. Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum[J]. PLoS Pathogen,2011,7(12):e1002460.
[37]Jenczmionka N J,Maier F J,Losch A P,et al. Mating,conidiation and pathogenicity of Fusarium graminearum,the main causal agent of the head-blight disease of wheat,are regulated by the MAP kinase gpmk1[J]. Current Genetics,2003,43(2):87-95.
[38]Zheng D W,Zhang S J,Zhou X Y,et al. The FgHOG1 pathway regulates hyphal growth,stress responses,and plant infection in Fusarium graminearum[J]. PLoS one,2012,7(11):e49495.
[39]Kronstad J W,Hu G G,Choi J. The cAMP/protein kinase A pathway and virulence in Cryptococcus neoformans[J]. Mycobiology,2011,39(3):143-150.
[40]Hu S,Zhou X Y,Gu X Y,et al. The cAMP-PKA pathway regulates growth,sexual and asexual differentiation,and pathogenesis in Fusarium graminearum[J]. Molecular Plant-Microbe Interactions,2014,27(6):557-566.
[41]Blum A,Benfield A H,Stiller J,et al. High-throughput FACS-based mutant screen identifies a gain-of-function allele of the Fusarium graminearum adenylyl cyclase causing deoxynivalenol over-production[J]. Fungal Genetics and Biology,2016,90:1-11.
[42]Bormann J,Boenisch M J,Bruckner E,et al. The adenylyl cyclase plays a regulatory role in the morphogenetic switch from vegetative to pathogenic lifestyle of Fusarium graminearum on wheat[J]. PLoS one,2014,9(3):e91135.
[43]Jiang C,Zhang C K,Wu C L,et al. TRI6 and TRI10 play different roles in the regulation of deoxynivalenol (DON) production by cAMP signalling in Fusarium graminearum[J]. Environmental Microbiology,2016,18(11):3689-3701.
[44]Wang X,Proud C G. Nutrient control of TORC1,a cell-cycle regulator[J]. Trends in Cell Biology,2009,19(6):260-267.
[45]Yu F W,Gu Q,Yun Y Z,et al. The TOR signaling pathway regulates vegetative development and virulence in Fusarium graminearum[J]. New Phytologist,2014,203(1):219-232.

相似文献/References:

[1]孙晓梅,黄金光.禾谷镰刀菌甾醇14α脱甲基酶基因cDNA克隆及生物信息学分析[J].江苏农业科学,2016,44(03):31.
 Sun Xiaomei,et al.cDNA cloning and bioinformatics analysis of sterol 14α-demethylase gene in Fusarium graminearum[J].Jiangsu Agricultural Sciences,2016,44(17):31.
[2]张鹏,邓渊钰,杨学明,等.小麦茎基腐病菌鉴定及不同药剂防治效果分析[J].江苏农业科学,2016,44(11):142.
 Zhang Peng,et al.Identification of wheat stem rot pathogen and analysis of control effects of different pesticides[J].Jiangsu Agricultural Sciences,2016,44(17):142.
[3]张悦,施维,李丹,等.禾谷镰刀菌全基因组候选效应因子预测与分析[J].江苏农业科学,2019,47(06):81.
 Zhang Yue,et al.Analysis of candidate effectors from genome of Fusarium graminearum[J].Jiangsu Agricultural Sciences,2019,47(17):81.
[4]曹坤,管明,陈康,等.一株拮抗禾谷镰刀菌和降解呕吐毒素解淀粉芽孢杆菌的筛选及在饲料贮存中的应用[J].江苏农业科学,2019,47(08):179.
 Cao Kun,et al.Screening of probiotic Bacillus amyloliquefaciens CPLK1314 with function of antagonizing Fusarium graminearum and degrading vomiting toxin and its application in forage storing[J].Jiangsu Agricultural Sciences,2019,47(17):179.
[5]张强,张艳茹,霍云凤,等.禾谷镰刀菌拮抗菌ZQT-31的分离与鉴定[J].江苏农业科学,2021,49(9):80.
 Zhang Qiang,et al.Isolation and identification of antagonistic bacteria ZQT-31 against Fusarium graminearum[J].Jiangsu Agricultural Sciences,2021,49(17):80.
[6]张艳茹,霍云凤,石红利,等.禾谷镰刀菌拮抗菌ZQT-9的鉴定与抑菌活性[J].江苏农业科学,2021,49(18):111.
 Zhang Yanru,et al.Identification and antifungal activity of antagonistic bacteria ZQT-9 against Fusarium graminearum[J].Jiangsu Agricultural Sciences,2021,49(17):111.
[7]王子洋,熊雨洁,冯发运,等.寡雄腐霉对禾谷镰刀菌防效及其产孢诱导剂筛选[J].江苏农业科学,2023,51(18):101.
 Wang Ziyang,et al.Control effect of Pythium oligandrum against Fusarium graminearum and screening of its pathogen inducers[J].Jiangsu Agricultural Sciences,2023,51(17):101.
[8]张强,张艳茹,霍云凤,等.禾谷镰刀菌拮抗菌21-1的发酵条件及稳定性分析[J].江苏农业科学,2023,51(20):122.
 Zhang Qiang,et al.Fermentation conditions and stability of antagonistic actinomycete 21-1 against Fusarium graminearum[J].Jiangsu Agricultural Sciences,2023,51(17):122.
[9]周萍,张弛,荀以仁,等.青稞内生细菌RKZ-05对禾谷镰刀菌的拮抗作用及其分子鉴定[J].江苏农业科学,2023,51(22):113.
 Zhou Ping,et al.Antagonism of endophytic bacteria RKZ-05 from highland barley against Fusarium graminearum and its molecular identification[J].Jiangsu Agricultural Sciences,2023,51(17):113.

备注/Memo

备注/Memo:
收稿日期:2017-03-14
基金项目:贵州省留学人员科技创新项目(编号:黔人项目资助合同[2016]23号);贵州大学引进人才项目(编号:贵大人基合字[2015]65号);贵州省科技支撑计划(编号:黔科合支撑[2017]2567)。
作者简介:侯瑞(1988—),女,陕西延安人,博士,讲师,主要从事植物病害防治研究。E-mail:jiayouhourui123@163.com。
更新日期/Last Update: 2018-09-05