|本期目录/Table of Contents|

[1]王翠平,陈建伟.甘蓝型油菜脯氨酸降解途径关键基因的进化分析[J].江苏农业科学,2018,46(17):28-31.
 Wang Cuiping,et al.Evolutionary analysis of key genes in proline degradation pathway of Brassica napus L.[J].Jiangsu Agricultural Sciences,2018,46(17):28-31.
点击复制

甘蓝型油菜脯氨酸降解途径关键基因的进化分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第46卷
期数:
2018年第17期
页码:
28-31
栏目:
生物技术
出版日期:
2018-09-05

文章信息/Info

Title:
Evolutionary analysis of key genes in proline degradation pathway of Brassica napus L.
作者:
王翠平 陈建伟
宁夏林业研究院种苗生物工程国家重点实验室,宁夏银川 750004
Author(s):
Wang Cuipinget al
关键词:
甘蓝型油菜多倍体脯氨酸代谢关键酶基因进化
Keywords:
-
分类号:
S634.301
DOI:
-
文献标志码:
A
摘要:
作为一种保护机制,胁迫情况下植物会迅速积累大量脯氨酸,对自身起到保护作用,而对于脯氨酸代谢相关基因在多倍体进化中的命运目前为止仍旧知之甚少。以异源四倍体甘蓝型油菜(Brassica napus)及其二倍体祖先白菜(B. rapa)、甘蓝(B. oleracea)为研究对象,数据库搜索和同源基因序列比对,研究脯氨酸代谢途径关键酶基因PDH1PDH2的进化命运。序列比对和进化分析表明,甘蓝型油菜中PDH1PDH2基因与其二倍体祖先的相对应基因高度同源;进化上与二倍体亲本相比,甘蓝型油菜PDH1基因可能发生了1个拷贝的丢失,而PDH2基因没有发生基因丢失现象。以上研究结果表明,与二倍体祖先相比,甘蓝型油菜中脯氨酸合成基因序列和表达模式均存在高度保守性,这说明脯氨酸积累在进化上可能对植物有利。
Abstract:
-

参考文献/References:

[1]Kishor P K,Hong Z L,Miao G H,et al. Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants[J]. Plant Physiology,1995,108(4):1387-1394.
[2]Schat H,Sharma S S,Vooijs R. Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris[J]. Physiologia Plantarum,1997,101(3):477-482.
[3]Yang S L,Lan S S,Gong M. Hydrogen peroxide-induced proline and metabolic pathway of its accumulation in maize seedlings[J]. Journal of Plant Physiology,2009,166(15):1694-1699.
[4]Tavakoli M,Poustini K,Alizadeh H. Proline accumulation and related genes in wheat leaves under salinity stress[J]. Journal of Agricultural Science and Technology,2016,18(3):707-716.
[5]Dar M I,Naikoo M I,Rehman F,et al. Proline accumulation in plants:roles in stress tolerance and plant development[M]//Iqbal N,Nazar R,Khan NA. Osmolytes and plants acclimation to changing environment: emerging omics technologies.New Delhi:Springer India,2016:155-166.
[6]Chaves M M,Flexas J,Pinheiro C. Photosynthesis under drought and salt stress:regulation mechanisms from whole plant to cell[J]. Annals of Botany,2009,103(4):551-560.
[7]Wu H H,Zou Y N,Rahman M M,et al. Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress[J]. Scientific Reports,2017,7:42389.
[8]Kishor P K,Sangam S,Amrutha R N,et al. Regulation of proline biosynthesis,degradation,uptake and transport in higher plants:its implications in plant growth and abiotic stress tolerance[J]. Current Science,2005,88(3):424-438.
[9]Wang L,Guo Z H,Zhang Y B,et al. Characterization of LhSorP5CS,a gene catalyzing proline synthesis in Oriental hybrid lily Sorbonne:molecular modelling and expression analysis[J]. Botanical Studies,2017,58(1):10.
[10]Verbruggen N,Hermans C. Proline accumulation in plants:a review[J]. Amino Acids,2008,35(4):753-759.
[11]Kiyosue T,Yoshiba Y,Yamaguchi-Shinozaki K,et al. A nuclear gene encoding mitochondrial proline dehydrogenase,an enzyme involved in proline metabolism,is upregulated by proline but downregulated by dehydration in Arabidopsis[J]. Plant Cell,1996,8(8):1323-1335.
[12]Soltis P S,Soltis D E. The role of genetic and genomic attributes in the success of polyploids[J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97(13):7051-7057.
[13]Buggs R J,Doust A N,Tate J A,et al. Gene loss and silencing in Tragopogon miscellus (Asteraceae):comparison of natural and synthetic allotetraploids[J]. Heredity,2009,103(1):73-81.
[14]Wang J,Tian L,Lee H S,et al. Nonadditive regulation of FRI and FLC loci mediates flowering-time variation in Arabidopsis allopolyploids[J]. Genetics,2006,173(2):965-974.
[15]Nagaharu U. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilisation[J]. The Journal of Japanese Botany,1935,7:389-452.
[16]Blanc G,Wolfe K H. Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution[J]. Plant Cell,2004,16(7):1679-1691.
[17]Yang Y W,Lai K N,Tai P Y,et al. Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages[J]. Journal of Molecular Evolution,1999,48(5):597-604.
[18]Park J Y,Koo D H,Lee S J,et al. Physical mapping and microsynteny of Brassica rapa ssp. pekinensis genome corresponding to a 222 kbp gene-rich region of Arabidopsis chromosome 4 and partially duplicated on chromosome 5[J]. Molecular Genetics and Genomics,2005,274(6):579-588.
[19]Wang X,Wang H,Wang J,et al. The genome of the mesopolyploid crop species Brassica rapa[J]. Nature Genetics,2011,43(10):1035-1039.
[20]Udall J A,Wendel J F. Polyploidy and crop improvement[J]. Crop Science,2006,46(Suppl):3-14.
[21]Wang C P,Lin B,Zhang Y Q,et al. The evolutionary fate of Δ1-pyrroline-5-carboxylate synthetase 1(P5CS1) genes in allotetraploid Brassica napus[J]. Journal of Systematics and Evolution,2014,52(5):566-579.
[22]Tamura K,Dudley J,Nei M,et al. MEGA 4:molecular evolutionary genetics analysis (MEGA) software version 4.0[J]. Molecular Biology and Evolution,2007,24(8):1596-1599.
[23]stergaard L,King G J. Standardized gene nomenclature for the Brassica genus[J]. Plant Methods,2008,4(1):10.
[24]Hua S J,Shamsi I H,Guo Y,et al. Sequence,expression divergence,and complementation of homologous ALCATRAZ loci in Brassica napus[J]. Planta,2009,230(3):493-503.
[25]Cardenas P D,Gajardo H A,Huebert T A,et al. Retention of triplicated phytoene synthase (PSY) genes in Brassica napus L. and its diploid progenitors during the evolution of the Brassiceae[J]. Theoretical and Applied Genetics,2012,124(7):1215-1228.
[26]Deng W,Zhou L,Zhou Y T,et al. Isolation and characterization of three duplicated PISTILLATA genes in Brassica napus[J]. Molecular Biology Reports,2011,38(5):3113-3120.

相似文献/References:

[1]彭琦,张洁夫,张维,等.甘蓝型油菜裂角性快速鉴定的方法及其应用[J].江苏农业科学,2014,42(11):128.
 Peng Qi,et al(8).Rapid identification method of crack angle of Brassica napus and its application[J].Jiangsu Agricultural Sciences,2014,42(17):128.
[2]徐亮.青海不同海拔环境对甘蓝型油菜种子油脂和干物质积累的影响[J].江苏农业科学,2015,43(12):95.
 Xu Liang.Effects of altitude environment on oil and dry matter accumulation in Brassica napus seeds in Qinghai Province[J].Jiangsu Agricultural Sciences,2015,43(17):95.
[3]谢雅晶,武爱华,刘贤金.青杂5号甘蓝型油菜的高效再生及农杆菌侵染转化体系的建立[J].江苏农业科学,2015,43(12):17.
 Xie Yajing,et al.High efficiency regeneration and agrobacterium-mediated transformation system of Brassica napus L. “Qinza No.5” with insect resistant gene[J].Jiangsu Agricultural Sciences,2015,43(17):17.
[4]李爱民,张永泰,惠飞虎,等.杂交油菜新品种扬优10号的选育[J].江苏农业科学,2013,41(07):88.
 Li Aimin,et al.Breeding of new hybrid rapeseed cultivar “Yangyou No.10”[J].Jiangsu Agricultural Sciences,2013,41(17):88.
[5]李爱民,周德银,惠飞虎,等.大籽粒优质甘蓝型油菜新品种扬油9号的选育[J].江苏农业科学,2014,42(02):78.
 Li Aimin,et al.Breeding of new Brassica napus cultivar“Yangyou No.9” with big grains and high quality[J].Jiangsu Agricultural Sciences,2014,42(17):78.
[6]淡亚彬,杜德志.甘蓝型油菜心叶颜色性状的遗传和AFLP标记的筛选[J].江苏农业科学,2016,44(04):90.
 Dan Yabin,et al.Inheritance of central leaf color trait in Brassica napus and screening of AFLP markers for that trait[J].Jiangsu Agricultural Sciences,2016,44(17):90.
[7]石小兵,杨航,赵致,等.三叶木通的组织培养和多倍体诱导[J].江苏农业科学,2016,44(05):69.
 Shi Xiaobing,et al.Tissue culture and polyploid induction of Akebia trifoliata[J].Jiangsu Agricultural Sciences,2016,44(17):69.
[8]付三雄,戚存扣,张洁夫,等.高产、高油甘蓝型油菜宁油22的选育与栽培要点[J].江苏农业科学,2016,44(02):111.
 Fu Sanxiong,et al.Breeding and cultivation techniques of Brassica napus “Ningyou 22” with high yield and high oil content[J].Jiangsu Agricultural Sciences,2016,44(17):111.
[9]刘露颖,赵喜亭,李明军.秋水仙碱诱导药用植物多倍体的研究进展[J].江苏农业科学,2014,42(04):178.
 Liu Luying,et al.Research progress of colchicine inducing medicinal polyploid plants[J].Jiangsu Agricultural Sciences,2014,42(17):178.
[10]王静,乔飞,江雪飞,等.不同倍性西瓜原生质体制备与低温耐受性分析[J].江苏农业科学,2015,43(10):206.
 Wang Jing,et al.Protoplast preparation and low temperature tolerance of watermelons with different ploidy[J].Jiangsu Agricultural Sciences,2015,43(17):206.

备注/Memo

备注/Memo:
收稿日期:2017-03-28
基金项目:宁夏自然科学基金(编号:NZ16215)。
作者简介:王翠平(1984—),女,山东临清人,博士,助理研究员,主要从事植物分子生物学研究。Tel:(0951)5667119;E-mail:wangcuipingcas@163.com。
更新日期/Last Update: 2018-09-05