|本期目录/Table of Contents|

[1]周玉珍,汪伟,金皓,等.能量耦合存在于产甲烷菌甲基辅酶M还原酶MCR活化过程[J].江苏农业科学,2018,46(23):329-333.
 Zhou Yuzhen,et al.Energy coupling exists in process of activating methyl-coenzyme M reductase(MCR) in methanogens[J].Jiangsu Agricultural Sciences,2018,46(23):329-333.
点击复制

能量耦合存在于产甲烷菌甲基辅酶M
还原酶MCR活化过程
(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第46卷
期数:
2018年第23期
页码:
329-333
栏目:
资源与环境
出版日期:
2018-12-05

文章信息/Info

Title:
Energy coupling exists in process of activating methyl-coenzyme M reductase(MCR) in methanogens
作者:
周玉珍 汪伟 金皓 姚萍 徐建明
淮阴师范学院/江苏省环洪泽湖生态农业技术重点实验室,江苏淮安 223300
Author(s):
Zhou Yuzhenet al
关键词:
能量耦合MCR活化产甲烷菌
Keywords:
-
分类号:
S188+.3
DOI:
-
文献标志码:
A
摘要:
产甲烷菌中甲基辅酶R还原酶(MCR)催化甲烷合成途径中的最后一步,也是甲烷合成途径中速率限制的一步。MCR的活化中心有一必须的辅酶F430。有活性的MCR酶的辅酶F430活性中心的镍处于+1价态。快速有效地活化MCR对于阐明MCR的催化机理和人为控制天然甲烷的合成起到相当重要的作用。然而MCR的活化相当困难,因为辅酶F430的Ni(Ⅰ)的氧化还原电势极低(<-600 mV),很容易被氧化而失活。目前为止,人们还没有找到体外活化MCR的有效方法,但发现H2和CO可以在体内活化MCR,虽然其活化机理还是一个迷。研究发现,在培养基中添加钨和硒可以提高H2活化MCR速度8倍和H2活化MCR的效率约65%;添加fumarate和CH3-SCoM使H2能够在体外活化MCR(为体内MCR活化程度的30%~40%),让CO体外活化的MCR更稳定。这都说明H2和CO活化MCR的过程中存在能量耦合反应,正是这种能量耦合反应使得氧化还原电势较高的H2(-420 mV)和CO(-520 mV)能还原氧化还原电势较低的MCR的活性中心F430(<-600 mV)。
Abstract:
-

参考文献/References:

[1]李煜珊,李耀明,欧阳志云. 产甲烷微生物研究概况[J]. 环境科学,2014,35(5):2025-2030.
[2]王保玉,刘建民,韩作颖,等. 产甲烷菌的分类及研究进展[J]. 基因组学与应用生物学,2014,33(2):418-425.
[3]Thauer R K. Biochemistry of methanogenesis:a tribute to Marjory Stephenson.1998 Marjory Stephenson Prize Lecture[J]. Microbiology,1998,144(9):2377-2406.
[4]Deppenmeier U. The unique biochemistry of methanogenesis[J]. Progress in Nucleic Acid Research and Molecular Biology,2002,71:223-283.
[5]Dimarco A A,Bobik T A,Wolfe R S. Unusual coenzymes of methanogenesis[J]. Annual Review of Biochemistry,1990,59:355-394.
[6]张万钦,吴树彪,郎乾乾,等. 微量元素对沼气厌氧发酵的影响[J]. 农业工程学报,2013(10):1-11.
[7]Dey M,Li X H,Kunz R C,et al. Detection of organometallic and radical intermediates in the catalytic mechanism of methyl-coenzyme M reductase using the natural substrate methyl-coenzyme M and a coenzyme B substrate analogue[J]. Biochemistry,2010,49(51):10902-10911.
[8]Kunz R C,Horng Y C,Ragsdale S W. Spectroscopic and kinetic studies of the reaction of bromopropanesulfonate with methyl-coenzyme M reductase[J]. Journal of Biological Chemistry,2006,281(45):34663-34676.
[9]Zhou Y Z,Dorchak A E,Ragsdale S W. In vivo activation of methyl-coenzyme M reductase by carbon monoxide[J]. Frontiers in Microbiology,2013,4:69-77.
[10]Diekert G,Klee B,Thauer R K. Nickel,a component of factor F430 from Methanobacterium thermoautotrophicum[J]. Archives of Microbiology,1980,124(1):103-106.
[11]Whitman W B,Wolfe R S. Presence of Nickel in factor F430 from Methanobacterium bryantii[J]. Biochemical and Biophysical Research Communications,1980,92(4):1196-1201.
[12]Gunsalus R P,Wolfe R S. Methyl coenzyme M reductase from Methanobacterium thermoautotrophicum resolution and properties of the components[J]. Journal of Biological Chemistry,1980,255(5):1891-1895.
[13]Rospert S,Bocher R,Albracht S P,et al. Methyl-coenzyme Mreductase preparations with high specific activity from H2-preincubated cells of Methanobacterium thermoautotrophicum[J]. FEBS Letters,1991,291(2):371-375.
[14]Bobik T A,Wolfe R S. Physiological importance of the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate in the reduction of carbon dioxide to methane in Methanobacterium[J]. Proceedings of the National Academy of Sciences of the United States of America,1988,85(1):60-63.
[15]Bobik T A,Wolfe R S. An unusual thiol-driven fumarate reductase in Methanobacterium with the production of the heterodisulfide of coenzyme M and N-(7-mercaptoheptanoyl) threonine-O3-phosphate[J]. Journal of Biological Chemistry,1989,264(31):18714-18718.
[16]Crossnoe C R,Germanas J P,Lemagueres P,et al. The crystal structure of Trichomonas vaginalis ferredoxin provides insight into metronidazole activation[J]. Journal of Molecular Biology,2002,318(2):503-518.
[17]Lockerby D L,Rabin H R,Bryan L E,et al. Ferredoxin-linked reduction of metronidazole in Clostridium pasteurianum[J]. Antimicrobial Agents and Chemotherapy,1984,26(5):665-669.
[18]Thauer R K,Kaster A K,Seedorf H A,et al. Methanogenic archaea:ecologically relevant differences in energy conservation[J]. Nature Reviews Microbiology,2008,6(8):579-591.
[19]Kaster A K,Moll J,Parey K,et al. Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea[J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(7):2981-2986.
[20]Costa K C,Wong P M,Wang T S,et al. Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(24):11050-11055.
[21]Li X H,Telser J,Kunz R C,et al. Observation of organometallic and radical intermediates formed during the reaction of methyl-coenzyme M reductase with bromoethanesulfonate[J]. Biochemistry,2010,49(32):6866-6876.
[22]Rospert S,Bocher R,Albracht S P,et al. Methyl-coenzyme M reductase preparations with high specific activity from H2-preincubated cells of Methanobacterium thermoautotrophicum[J]. FEBS Letters,1991,291(2):371-375.
[23]Gunsalus R P,Wolfe R S. Stimulation of CO2 reduction to methane by methylcoenzyme M in extracts Methanobacterium[J]. Biochemical and Biophysical Research Communications,1977,76(3):790-795.
[24]Rouviere P E,Wolfe R S. Novel biochemistry of methanogenesis[J]. Journal of Biological Chemistry,1988,263(17):7913-7916.
[25]Herrmann G,Jayamani E,Mai G,et al. Energy conservation via electron-transferring flavoprotein in anaerobic bacteria[J]. Journal of Bacteriology,2008,190(3):784-791.
[26]Li F L,Hinderberger J,Seedorf H,et al. Coupled ferredoxin and crotonyl coenzyme a (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri[J]. Journal of Bacteriology,2008,190(3):843-850.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2017-07-28
基金项目:江苏省自然科学基金面上项目(编号:BK20131213);江苏省淮安市科技计划(编号:HG201307);江苏省生物质与酶技术重点实验室项目(编号:JSBEET1303)。
作者简介:周玉珍(1977—),女,湖北武汉人,博士,副教授,主要从事微生物代谢相关酶的酶活机理及其表达调控研究。E-mail:zyz@hytc.edu.cn。
通信作者:徐建明,硕士,研究员,主要植物生理生化方面的研究。E-mail:xjm@hytc.edu.cn。
更新日期/Last Update: 2018-12-05