|本期目录/Table of Contents|

[1]曹燕篆,王小娟,袁旭峰,等.利用废纸产纤维素酶复合菌系的筛选及性质研究[J].江苏农业科学,2019,47(01):237-242.
 Cao Yanzhuan,et al.Study on screening and characterization of cellulase-compacting bacterial strains from waste paper[J].Jiangsu Agricultural Sciences,2019,47(01):237-242.
点击复制

利用废纸产纤维素酶复合菌系的筛选及性质研究(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第01期
页码:
237-242
栏目:
资源与环境
出版日期:
2019-01-05

文章信息/Info

Title:
Study on screening and characterization of cellulase-compacting bacterial strains from waste paper
作者:
曹燕篆12 王小娟2 袁旭峰2 王小芬2 崔宗均2
1.山西农业大学资源与环境学院,山西太谷 030801; 2.中国农业大学农学院,北京 100193
Author(s):
Cao Yanzhuanet al
关键词:
复合菌系废纸分解纤维素酶微生物组成
Keywords:
-
分类号:
S182;X705
DOI:
-
文献标志码:
A
摘要:
为了获得1组能够高效分解废纸并产胞外纤维素酶的复合菌系,采用外淘汰法,在常温条件下以土壤及枯枝落叶为菌源,以废打印纸为唯一碳源,筛选得到1组复合菌系PSD。结果表明,该复合菌系能够在6 d内分解纸总质量的71%,其中纤维素降解率为72%,半纤维素降解率为48%。此外,羧甲基纤维素酶活性在分解3 d时达到最高值 3.26 U/mL,半纤维素酶活性在分解4 d时达到最高值6.37 U/mL。当培养温度在25~35 ℃,培养基pH值在 6.0~80,培养基为Hutchinson时,复合菌系具有较好的纸分解效果和产酶活性。利用16S及26S rRNA克隆技术分析微生物组成结果表明,该复合菌系由细菌和真菌组成,其中细菌主要包括厚壁菌门、变形菌门及拟杆菌门,真菌主要包括波氏假性霉样菌(Pseudallescheria boydii)。由研究结果可知,得到的复合菌系PSD能够有效分解废纸并同时分泌纤维素酶,对打印纸废弃物的分解及资源利用具有一定的应用意义。
Abstract:
-

参考文献/References:

[1]Zhang Z,Macquarrie D J,de Bruyn M,et al. Low-temperature microwave-assisted pyrolysis of waste office paper and the application of bio-oil as an Al adhesive[J]. Green Chemistry,2015,17(1):260-270.
[2]Rahman M O,Hussain A,Basri H. A critical review on waste paper sorting techniques[J]. International Journal of Environmental Science and Technology,2014,11(2):551-564.
[3]Ioelovich M. Waste paper as promising feedstock for production of biofuel[J]. Journal of Scientific Research and Reports,2014,3(7):905-916.
[4]Nishimura H,Tan L,Sun Z Y,et al. Efficient production of ethanol from waste paper and the biochemical methane potential of stillage eluted from ethanol fermentation[J]. Waste Management,2016,48:644-651.
[5]Baba Y S,Tada C,Fukuda Y,et al. Improvement of methane production from waste paper by pretreatment with rumen fluid[J]. Bioresource Technology,2013,128:94-99.
[6]Pendyala B,Chaganti S R,Lalman J A,et al. Using a food and paper-cardboard waste blend as a novel feedstock for hydrogen production:influence of key process parameters on microbial diversity[J]. International Journal of Hydrogen Energy,2013,38(15):6357-6367.
[7]Zheng W,Zheng Q,Xue Y,et al. Influence of rice straw polyphenols on cellulase production by Trichoderma reesei[J]. Journal of Bioscience and Bioengineering,2017,123(6):731-738.
[8]Xia L M,Shen X L. High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue[J]. Bioresource Technology,2004,91(3):259-262.
[9]Visser E M,Falkoski D L,de Almeida M N,et al. Production and application of an enzyme blend from Chrysoporthe cubensis and Penicillium pinophilum with potential for hydrolysis of sugarcane bagasse[J]. Bioresource Technology,2013,144(6):587-594.
[10]Lan T Q,Wei D,Yang S T,et al. Enhanced cellulase production by Trichoderma viride in a rotating fibrous bed bioreactor[J]. Bioresource Technology,2013,133(4):175-182.
[11]Libardi N,Soccol C R,Góes-Neto A,et al. Domestic wastewater as substrate for cellulase production by Trichoderma harzianum[J]. Process Biochemistry,2017,57:190-199.
[12]Azadian F,Badoei-Dalfard A,Namaki-Shoushtari A,et al. Production and characterization of an acido-thermophilic,organic solvent stable cellulase from Bacillus sonorensis HSC7 by conversion of lignocellulosic wastes[J]. Journal of Genetic Engineering and Biotechnology,2017,15(1):187-196.
[13]Dong X Q,Yang J S,Zhu N,et al. Sugarcane bagasse degradation and characterization of three white-rot fungi[J]. Bioresource Technology,2013,131(2):443-451.
[14]崔宗均,李美丹,朴哲,等. 一组高效稳定纤维素分解菌复合系MC1的筛选及功能[J]. 环境科学,2002,23(3):36-39.
[15]Yang H,Wu H,Wang X,et al. Selection and characteristics of a switchgrass-colonizing microbial community to produce extracellular cellulases and xylanases[J]. Bioresource Technology,2011,102(3):3546-3550.
[16]温博婷,袁旭峰,华彬彬,等. 纤维素分解菌系WSD-5常温产酶高温糖化小麦秸秆研究[J]. 中国农业大学学报,2014,19(2):36-42.
[17]Kuhad R C,Deswal D,Sharma S A,et al. Revisiting cellulase production and redefining current strategies based on major challenges[J]. Renewable & Sustainable Energy Reviews,2016,55:249-272.
[18]崔宗均,朴哲,王伟东,等. 一组高效稳定纤维素分解菌复合系MC1的产酶条件[J]. 农业环境科学学报,2004,23(2):296-299.
[19]Guo P,Zhu W B,Wang H,et al. Functional characteristics and diversity of a novel lignocelluloses degrading composite microbial system with high xylanase activity[J]. Journal of Microbiology and Biotechnology,2010,20(2):254-264.
[20]Richa S,Subhash C,Amrita S. Isolation of microorganism from soil contaminated with degraded paper in Jharna village[J]. Journal of Soil Science,2013,4(2):23-27.
[21]Bunge M,Wagner A,Fischer M,et al. Enrichment of a dioxin-dehalogenating Dehalococcoides species in two-liquid phase cultures[J]. Environmental Microbiology,2008,10(10):2670-2683.
[22]Khianngam S,Tanasupawat S,Akaracharanya A,et al. Cohnella cellulosilytica sp. nov.,isolated from buffalo faeces[J]. International Journal of Systematic and Evolutionary Microbiology,2012,62(8):1921-1925.
[23]Saikia N,Das S K,Patel B K,et al. Biodegradation of beta-cyfluthrin by Pseudomonas stutzeri strain S1[J]. Biodegradation,2005,16(6):581-589.
[24]Xie G,Bruce D C,Challacombe J F,et al. Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii[J]. Applied and Environmental Microbiology,2007,73(11):3536-3546.
[25]Wang Y X,Liu Q,Yan L,et al. A novel lignin degradation bacterial consortium for efficient pulping[J]. Bioresource Technology,2013,139(7):113-119.
[26]April T M,Abbott S P,Foght J M,et al. Degradation of hydrocarbons in crude oil by the ascomycete Pseudallescheria boydii (Microascaceae)[J]. Canadian Journal of Microbiology,1998,44(3):270-278.
[27]Anastasi A,Varese G C,Marchisio V F. Isolation and identification of fungal communities in compost and vermicompost[J]. Mycologia,2005,97(1):33-44.
[28]Ishii K,Furuichi T,Tanikawa N,et al. Estimation of the biodegradation rate of 2,3,7,8-tetrachlorodibenzo-p-dioxin by using dioxin-degrading fungus,Pseudallescheria boydii[J]. Journal of Hazardous Materials,2009,162(1):328-332.
[29]Aranda E,Godoy P,Reina R A,et al. Isolation of of ascomycota fungi with capability to transform PAHs:insights into the biodegradation mechanisms of penicillium oxalicum[J]. International Biodeterioration & Biodegradation,2017,122:141-150.
[30]Klosterman S J,Subbarao K V,Kang S,et al. Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens[J]. PLoS Pathogens,2011,7:e1002137.
[31]Talboys P W. Degradation of cellulose by Verticillium albo-atrum[J]. Transactions of the British Mycological Society,1958,41(2):242-248.

相似文献/References:

[1]何水清,艾士奇,王建豪,等.木质纤维素分解复合菌系的分解特性与细菌组成多样性分析[J].江苏农业科学,2017,45(16):241.
 He Shuiqing,et al.Decomposition characteristics and bacteria composition diversity analysis of Lignocellulose-decomposing complex strain[J].Jiangsu Agricultural Sciences,2017,45(01):241.

备注/Memo

备注/Memo:
收稿日期:2017-09-11
基金项目:国家科技支撑计划(编号:2012BAD14B06);山西省青年科技研究基金(编号:201601D021105);山西省回国留学人员科研资金(编号:2016-072);山西农业大学引进人才科研启动项目(编号:2014YJ17)。
作者简介:曹燕篆(1984—),女,山西太原人,博士,讲师,主要从事废弃物资源利用及微生物生态学研究。Tel:(0354)6288322;E-mail:caoyanzhuan@126.com。
通信作者:崔宗均
更新日期/Last Update: 2019-01-05