|本期目录/Table of Contents|

[1]唐璇,龙明华,乔双雨,等.不同种类蔬菜幼苗对多环芳烃胁迫的生理反应[J].江苏农业科学,2019,47(07):166-170.
 Tang Xuan,et al.Physiological responses of different kinds of vegetable seedlings to polycyclic aromatic hydrocarbon stress[J].Jiangsu Agricultural Sciences,2019,47(07):166-170.
点击复制

不同种类蔬菜幼苗对多环芳烃胁迫的生理反应(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第07期
页码:
166-170
栏目:
园艺与林学
出版日期:
2019-05-10

文章信息/Info

Title:
Physiological responses of different kinds of vegetable seedlings to polycyclic aromatic hydrocarbon stress
作者:
唐璇1 龙明华1 乔双雨1 李朋欣1 张会敏1 梁勇生12
1.广西大学农学院,广西南宁 530004; 2.广西南宁市蔬菜研究所,广西南宁 530000
Author(s):
Tang Xuanet al
关键词:
多环芳烃蔬菜幼苗生长生理生化
Keywords:
-
分类号:
Q945.78
DOI:
-
文献标志码:
A
摘要:
为了探索多环芳烃对蔬菜幼苗生长和生理特性的影响。分别以0.3、0.6、0.9 mg/L等不同浓度的16种多环芳烃对黄瓜、菜心、萝卜进行胁迫培养,以不加多环芳烃的幼苗为对照,研究多环芳烃胁迫下各蔬菜幼苗的生长和生理响应。结果表明,黄瓜的叶宽、鲜质量、CAT活性、POD活性以及萝卜的叶绿素b含量、CAT活性在0.3 mg/L PAHs处理时达到最小值。处理浓度为0.6 mg/L时,黄瓜的POD活性、菜心的维生素C含量和萝卜的MDA含量最小。黄瓜的干质量、菜心的鲜质量以及萝卜的鲜质量、POD活性在0.9 mg/L PAHs处理下达到最小值。不同浓度的PAHs处理对黄瓜和菜心叶片叶绿素的合成和光合作用以及萝卜的维生素C含量均有促进作用。随着PAHs处理浓度的升高,黄瓜和菜心的MDA含量呈上升趋势,在0.9 mg/L PAHs处理下达到最大值。不同种类蔬菜幼苗对PAHs具有不同生理反应的原因之一,可能与它们叶片结构的不同导致吸收PAHs量的差异有关。
Abstract:
-

参考文献/References:

[1]李玉龙. 土壤中多环芳烃的迁移转化规律及其对植物生长的影响[D]. 西安:西安建筑科技大学,2015.
[2]Hadibarata T,Kristanti R A. Fate and cometabolic degradation of benzo[a]pyrene by white-rot fungus Armillaria sp. F022[J]. Bioresource Technology,2012,107:314-318.
[3]Quilliam R S,Rangecroft S,Emmett B A,et al. Is biochar a source or sink for polycyclic aromatic hydrocarbon (PAH) compounds in agricultural soils?[J]. Global Change Biology Bioenergy,2013,5(2):96-103.
[4]Keith L H,Telliard W A. Priority pollutants Ⅰ. A perspective view[J]. Environmental Science and Technology,1979,13(4):416-423.
[5]Carmichael L M,Christman R F,Pfaender F K. Desorption and mineralization kinetics of phenanthrene and chrysene in contaminated soils[J]. Environmental Science and Technology,1997,31(1):126-132.
[6]刘魏魏. 多环芳烃污染农田土壤的生物协同修复及有机废物调控强化修复技术[D]. 南京:南京农业大学,2009.
[7]殷婧,夏忠欢,周彦池,等. 临汾市售蔬菜中多环芳烃污染特征及致癌风险分析[J]. 生态毒理学报,2016,11(3):265-271.
[8]Cobbett C S,Meagher R B. Arabidopsis and the genetic potential for the phytoremediation of toxic elemental and organic pollutants[J]. The Arabidopsis Book,2002,1:e0032.
[9]Harveyp J,Campanella B F,Castro P M L,et al. Phytoremediation of polyaromatic hydrocarbons,anilines and phenoles[J]. Environmental Seience Pollution Research International,2002,9(1):29-47.
[10]Wild S R,Jones K C. The significance of polynuclear aromatic hydrorbons applied to agricultural soils in sewage sludges in the UK[J]. Waste Management and Research,1994,12(1):49-59.
[11]Horstmann M,Mclachlan M S. Atmospheric deposition of semivolatile organic compounds to two forest canopies[J]. Atmospheric Environment,1998,32(10):1799-1809.
[12]Trapp S,McFarlane J C. Plant contamination:modeling and simulation of organic chemical process[M]. Boca Raton:Lewis,1995:254.
[13]Xu S Y,Chen Y X,Wu W X,et al. Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation[J]. Science of the Total Environment,2006,363(1/2/3):206-215.
[14]张志良,瞿伟菁,李小芳. 植物生理学实验指导[M]. 北京:高等教育出版社,2009.
[15]刘萍,李明军. 植物生理学实验技术[M]. 北京:科学出版社,2007.
[16]路文静,李奕松. 植物生理学实验教程[M]. 北京:中国林业出版社,2012.
[17]Tewari R K,Kumar P,Sharma P N. Magnesium deficiency induced oxidative stress and antioxidant responses in mulberry plants[J]. Scientia Horticulturae,2006,108(1):7-14.
[18]Schrelber L,Schonherr J. Uptake of organic chemicals in conifer needles:surface adsorption and permeability of cuticles[J]. Environmental Science & Technology,1992,26:153-159.
[19]Little P,Wiffen R D. Emission and deposition of petrol engine exhaust Pb-Ⅰ. Deposition of exhaust Pb to plant and soil surface[J]. Atoms Environ,1977,11(5):437-447.
[20]Howsam M,Jones K C,meason P. PAHs associated with the leaves of three deciduous tree species:Ⅰ. Concentrations and profiles[J]. Environmental Pollution,2000,108:413-424.
[21]黄勇. 城市植物叶片PAHs特性及对土壤微生物与酶的影响[D]. 长沙:中南林业科技大学,2011.
[22]Barber J L,Kurt P B,Thomas G O,et al. Investigation into the importance of the stomatal pathway in the exchange of PCBs between air and plants[J]. Environmental Science & Technology,2002,36:4282-4287.

相似文献/References:

[1]徐文君,王峰,朱晓军,等.气质联用法测定食用植物油中的多环芳烃[J].江苏农业科学,2014,42(11):339.
 Xu Wenjun,et al(9).Determination of polycyclic aromatic hydrocarbons in edible oils by GC-MS method[J].Jiangsu Agricultural Sciences,2014,42(07):339.
[2]张佩华,韦颖,李鹏善,等.苍耳在PAHs胁迫下的根系响应[J].江苏农业科学,2015,43(11):458.
 Zhang Peihua,et al.Roots response of Xanthium sibiricum Patr under PAHs stress[J].Jiangsu Agricultural Sciences,2015,43(07):458.
[3]万译文,黄向荣,李小玲,等.固相萃取-高效液相色谱法测定渔业水体中16种多环芳烃[J].江苏农业科学,2015,43(01):280.
 Wan Yiwen,et al.Determination of 16 kinds of polycyclic aromatic hydrocarbons in fishery water bodies by solid phase extraction-high performance liquid chromatography[J].Jiangsu Agricultural Sciences,2015,43(07):280.
[4]张闻,郑立稳,王加宁,等.利用实时荧光定量PCR特异检测多环芳烃污染土壤中的外源降解菌[J].江苏农业科学,2018,46(11):15.
 Zhang Wen,et al.Application of a real-time quantitative PCR assay for specific detection of inoculated degrading microbes in soils contaminated by polycyclic aromatic hydrocarbons[J].Jiangsu Agricultural Sciences,2018,46(07):15.
[5]李朋欣,龙明华,乔双雨,等.多环芳烃胁迫菜心叶片上下表皮对其生理特性的影响[J].江苏农业科学,2019,47(09):175.
 Li Pengxin,et al.Effects of PAHs on some physiological characteristics of flowering Chinese cabbage leaf upper and lower epidermises[J].Jiangsu Agricultural Sciences,2019,47(07):175.
[6]梁勇生,龙明华,巫桂芬,等.菜心吸收和积累土壤中5种多环芳烃规律[J].江苏农业科学,2019,47(15):162.
 Liang Yongsheng,et al.Study on absorption and accumulation rules of five kinds of polycyclic aromatic hydrocarbons in soil by Chinese flowering cabbage[J].Jiangsu Agricultural Sciences,2019,47(07):162.

备注/Memo

备注/Memo:
收稿日期:2017-12-21
基金项目:国家自然科学基金(编号:31360479);国家现代农业产业技术体系广西大宗蔬菜创新团队建设项目(编号:nycytxgxcxtd-10-03);广西自然科学基金(编号:2014GXNSFAA118100)。
作者简介:唐璇(1993—),女,广西来宾人,硕士研究生,研究方向为环境调控与蔬菜栽培生理。E-mail:532078435@qq.com。
通信作者:龙明华,博士,教授,主要从事蔬菜育种及农产品质量安全研究。E-mail:longmhua@163.com。
更新日期/Last Update: 2019-04-05