|本期目录/Table of Contents|

[1]马龙,徐薇,窦玲玲,等.水稻花粉育性相关基因研究进展[J].江苏农业科学,2019,47(10):42-47.
 Ma Long,et al.Research progress on pollen fertility-related genes in rice (Oryza sativa L.)[J].Jiangsu Agricultural Sciences,2019,47(10):42-47.
点击复制

水稻花粉育性相关基因研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第10期
页码:
42-47
栏目:
专论与综述
出版日期:
2019-06-12

文章信息/Info

Title:
Research progress on pollen fertility-related genes in rice (Oryza sativa L.)
作者:
马龙 徐薇 窦玲玲 柯笑楠 刘明月 耿艳飞 黄霞 贾玉芳 刘庆坡
浙江农林大学农业与食品科学学院,杭州临安 311300
Author(s):
Ma Longet al
关键词:
水稻花粉发育生殖发育相关基因miRNA育种利用
Keywords:
-
分类号:
S511.03
DOI:
-
文献标志码:
A
摘要:
花粉发育为水稻生殖发育不可或缺的过程之一,其育性高低对水稻育种以及经济产量具有重要意义。大量研究发现,水稻花粉发育是严格受基因表达调控的生物学过程。基于此,本文综述与水稻花粉育性相关的蛋白编码基因和调控性miRNA的研究现状,总结有关基因在调控水稻花粉育性方面的生物学功能及作用机制,并对该领域未来的发展趋势作出分析与展望,从而为水稻分子设计育种提供理论参考。
Abstract:
-

参考文献/References:

[1]Itoh J,Nonomura K,Ikeda K,et al. Rice plant development:from zygote to spikelet[J]. Plant & Cell Physiology,2005,46(1):23-47.
[2]Lombardo L,Coppola G,Zelasco S. New technologies for insect-resistant and herbicice-tolerant plants[J]. Trends in Biotechnology,2016,34(1):49-57.
[3]Takeda S,Matsuoka M. Genetic approaches to crop improvement:responding to environmental and population changes[J]. Nature Reviews Genetics,2008,9(6):444-457.
[4]Varshney R K,Hoisington D A,Tyagi A K. Advances in cereal genomics and applications in crop breeding[J]. Trends in Biotechnology,2006,24(11):490-499.
[5]Zhang Q F. Strategies for developing green super rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(42):16402-16409.
[6]Zhang K,Song Q,Wei Q,et al. Down-regulation of OsSPX1 caused semi-male sterility,resulting in reduction of grain yield in rice[J]. Plant Biotechnology Journal,2016,14(8):1661-1672.
[7]Ashikari M,Sakakibara H,Lin S,et al. Cytokinin oxidase regulates rice grain production[J]. Science,2005,309(5735):741-745.
[8]Wang Y X,Xiong G S,Hu J,et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice[J]. Nature Genetics,2015,47(8):944-948.
[9]Si L Z,Chen J Y,Huang X E,et al. OsSPL13 controls grain size in cultivated rice[J]. Nature Genetics,2016,48(4):447-456.
[10]Wang S K,Li S,Liu Q,et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics,2015,47(3):949-954.
[11]Huang X Z,Qian Q,Liu Z B,et al. Natural variation at the DEP1 locus enhances grain yield in rice[J]. Nature Genetics,2009,41(4):494-497.
[12]Jiao Y Q,Wang Y H,Xue D W,et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nature Genetics,2010,42(6):541-544.
[13]Li S C,Li W B,Huang B,et al. Natural variation in PTB1 regulates rice seed setting rate by controlling pollen tube growth[J]. Nature Communications,2013,4:2793.
[14]Kwon C T,Kim S H,Kim D,et al. The rice floral repressor Early Flowering 1 affects spikelet fertility by modulating gibberellin signaling[J]. Rice,2015,8(1):58.
[15]Lu G W,Coneva V,Casaretto J A,et al. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis,transport and distribution[J]. Plant Journal,2015,83(5):913-925.
[16]Xu Y,Yang J,Wang Y H,et al. OsCNGC13 promotes seed-setting rate by facilitating pollen tube growth in stylar tissues[J]. PLoS Genetics,2017,13(7):e1006906.
[17]胡骏,黄文超,朱仁山,等. 水稻雄性不育与杂种优势的利用[J]. 武汉大学学报(理学版),2013,59(1):1-9.
[18]Ma H. Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants[J]. Annual Review of Plant Biology,2005,56:393-434.
[19]冯九焕,卢永根,刘向东,等. 水稻花粉发育过程及其分期[J]. 中国水稻科学,2001,15(1):21-28.
[20]卢永根,冯九焕,刘向东,等. 水稻(Oryza sativa L.)花粉及花药壁发育的超微结构研究[J]. 中国水稻科学,2002,16(1):30-38.
[21]谭何新,文铁桥,张大兵. 水稻花粉发育的分子机理[J]. 植物学通报,2007,24(3):330-339.
[22]Zhang D B,Luo X E,Zhu L. Cytological analysis and genetic control of rice anther development[J]. Journal of Genetics and Genomics,2011,38(9):379-390.
[23]Zhang D B,Wilson Z A. Stamen specification and anther development in rice[J]. Chinese Science Bulletin,2009,54(14):2342-2353.
[24]王洋. 水稻育性突变体的筛选和育性相关基因OsMSH4及PSS1的克隆与功能研究[D]. 南京:南京农业大学,2013.
[25]Glover J,Grelon M,Craig S,et al. Cloning and characterization of MS5 from Arabidopsis:a gene critical in male meiosis[J]. Plant Journal,1998,15(3):345-356.
[26]Han M J,Jung K H,Yi G,et al. Rice immature pollen 1 (RIP1) is a regulator of late pollen development[J]. Plant & Cell Physiology,2006,47(11):1457-1472.
[27]Jung K H,Han M J,Lee D Y,et al. Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development[J]. The Plant Cell,2006,18(11):3015-3032.
[28]Yamagata Y,Yamamoto E,Aya K,et al. Mitochondrial gene in the nuclear genome induces reproductive barrier in rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(4):1494-1499.
[29]Ueda K,Yoshimura F,Miyao A,et al. COLLAPSED ABNORMAL POLLEN1 gene encoding the arabinokinase-like protein is involved in pollen development in rice[J]. Plant Physiology,2013,162(2):858-871.
[30]Jiang S Y,Cai M N,Ramachandran S. The Oryza sativa no pollen (Osnop) gene plays a role in male gametophyte development and most likely encodes a C2-GRAM domain-containing protein[J]. Plant Molecular Biology,2005,57(6):835-853.
[31]Zhou S R,Wang Y,Li W C,et al. Pollen semi-sterility1 encodes a kinesin-1-like protein important for male meiosis,anther dehiscence,and fertility in rice[J]. The Plant Cell,2011,23(1):111-129.
[32]Wu L A,Guan Y S,Wu Z G,et al. OsABCG15 encodes a membrane protein that plays an important role in anther cuticle and pollen exine formation in rice[J]. Plant Cell Reports,2014,33(11):1881-1899.
[33]Niu B X,,Fu F R,He M,et al. The ATP-binding cassette transporter OsABCG15 is required for anther development and pollen fertility in rice[J]. Journal of Integrative Plant Biology,2013,55(8):710-720.
[34]Zhao G C,Shi J X,Liang W Q,et al. Two ATP binding cassette G transporters,rice ATP binding cassette G26 and ATP binding cassette G15,collaboratively regulate rice male reproduction[J]. Plant Physiology,2015,169(3):2064-2079.
[35]Hong L L,Tang D,Shen Y,et al. MIL2(MICROSPORELESS2) regulates early cell differentiation in the rice anther[J]. New Phytologist,2012,196(2):402-413.
[36]Yi J,Kim S R,Lee D Y,et al. The rice gene DEFECTIVE TAPETUM AND MEIOCYTES 1 (DTM1) is required for early tapetum development and meiosis[J]. Plant Journal,2012,70(2):256-270.
[37]Jung K H,Han M J,Lee Y S,et al. Rice undeveloped tapetum1 is a major regulator of early tapetum development[J]. The Plant Cell,2005,17(10):2705-2722.
[38]Yi J,Moon S,Lee Y S,et al. Defective tapetum cell death 1 (DTC1) regulates ROS levels by binding to metallothionein during tapetum degeneration[J]. Plant Physiology,2016,170(3):1611-1623.
[39]Niu N N,Liang W Q,Yang X J,et al. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice[J]. Nature Communications,2013,4:1445.
[40]Li N,Zhang D S,Liu H S,et al. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development[J]. The Plant Cell,2006,18(11):2999-3014.
[41]Shi X,Sun X H,Zhang Z G,et al. GLUCAN SYNTHASE-LIKE 5 (GSL5) plays an essential role in male fertility by regulating callose metabolism during microsporogenesis in rice[J]. Plant and Cell Physiology,2015,56(3):497-509.
[42]Moon S,Kim S R,Zhao G C,et al. Rice GLYCOSYLTRANSFERASE1 encodes a glycosyltransferase essential for pollen wall formation[J]. Plant Physiology,2013,161(2):663-675.
[43]Tsuchiya T,Toriyama K,Ejiri S,et al. Molecular characterization of rice genes specifically expressed in the anther tapetum[J]. Plant Molecular Biology,1994,26(6):1737-1746.
[44]Kaneko M,Inukai Y,Ueguchi-Tanaka M,et al. Loss-of-function mutations of the rice GAMYB gene impair α-amylase expression in aleurone and flower development[J]. The Plant Cell,2004,16(1):33-44.
[45]Tang J Y,Chu C C. MicroRNAs in crop improvement:fine-tuners for complex traits[J]. Nature Plants,2017,3(7):17077.
[46]Ma X X,Shao C G,Wang H Z,et al. Construction of small RNA-mediated gene regulatory networks in the Roots of rice(Oryza sativa)[J]. BMC Genomics,2013,14:510.
[47]Meng Y J,Shao C G,Wang H Z,et al. Construction of gene regulatory networks mediated by vegetative and reproductive stage-specific small RNAs in rice (Oryza sativa)[J]. New Phytologist,2013,197(2):441-453.
[48]李兴旺. 水稻绒毡层细胞程序性死亡调控育性的分子机理研究[D]. 武汉:华中农业大学,2011.
[49]Bedinger P. The remarkable biology of pollen[J]. The Plant Cell,1992,4:879-887.
[50]Aya K,Ueguchi-Tanaka M,Kondo M,et al. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB[J]. The Plant Cell,2009,21(5):1453-1472.
[51]Lee S,Jung K H,An G H,et al. Isolation and characterization of a rice cysteine protease gene,OSCP1,using T-DNA gene-trap system[J]. Plant Molecular Biology,2004,54(5):755-765.
[52]Zhang D S,Liang W Q,Yin C S,et al. OsC6,encoding a lipid transfer protein,is required for postmeiotic anther development in rice[J]. Plant Physiology,2010,154(1):149-162.
[53]Zhang D S,Liang W Q,Yuan Z,et al. Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development[J]. Molecular Plant,2008,1(4):599-610.
[54]Li L,Li Y,Song S,et al. An anther development F-box (ADF) protein regulated by tapetum degeneration retardation (TDR) controls rice anther development[J]. Planta,2015,241(1):157-166.
[55]Cai C F,Zhu J,Lou Y,et al. The functional analysis of OsTDF1 reveals a conserved genetic pathway for tapetal development between rice and Arabidopsis[J]. Science Bulletin,2015,60(12):1073-1082.
[56]Zhao X A,de Palma J,Oane R,et al. OsTDL1A binds to the LRR domain of rice receptor kinase MSP1,and is required to limit sporocyte numbers[J]. Plant Journal,2008,54(3):375-387.
[57]Yang X J,Liang W Q,Chen M J,et al. Rice fatty acyl-CoA synthetase OsACOS12 is required for tapetum programmed cell death and male fertility[J]. Planta,2017,246(1):105-122.
[58]Li Y L,Li D D,Guo Z L,et al. OsACOS12,an orthologue of Arabidopsis acyl-CoA synthetase5,plays an important role in pollen exine formation and anther development in rice[J]. BMC Plant Biology,2016,16(1):256.
[59]Lee S K,Eom J S,Hwang S K,et al. Plastidic phosphoglucomutase and ADP-glucose pyrophosphorylase mutants impair starch synthesis in rice pollen grains and cause male sterility[J]. Journal of Experimental Botany,2016,67(18):5557-5569.
[60]Xu X B,Bai H Q,Liu C P,et al. Genome-Wide analysis of MicroRNAs and their target genes related to leaf senescence of rice[J]. PLoS One,2014,9(12):e114313.
[61]Kozomara A,Griffiths-Jones S. miRBase:annotating high confidence microRNAs using deep sequencing data[J]. Nucleic Acids Research,2014,42:D68-D73.
[62]Singh S,Parihar P,Singh R,et al. Heavy metal tolerance in plants:role of transcriptomics,proteomics,metabolomics and ionomics[J]. Frontiers in Plant Science,2015,6:1143.
[63]Li S X,Liu J X,Liu Z Y,et al. HEAT-INDUCED TAS1 TARGET1 mediates thermotolerance via heat stress transcription factor a1a-directed pathways in Arabidopsis[J]. The Plant Cell,2014,26(4):1764-1780.
[64]Shriram V,Kumar V,Devarumath R M,et al. MicroRNAs as potential targets for abiotic stress tolerance in plants[J]. Frontiers in Plant Science,2016,7:817.
[65]Wei L Q,Yan L F,Wang T. Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa[J]. Genome Biology,2011,12(6):R53.
[66]Li X,Shahid M Q,Wu J W,et al. Comparative small RNA analysis of pollen development in autotetraploid and diploid rice[J]. International Journal of Molecular Sciences,2016,17(4):499.
[67]Li X,Shahid M Q,Xia J,et al. Analysis of small RNAs revealed differential expressions during pollen and embryo sac development in autotetraploid rice[J]. BMC Genomics,2017,18:129.
[68]Yamaguchi A,Wu M F,Yang L,et al. The MicroRNA-Regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY,FRUITFULL,and APETALA1[J]. Developmental Cell,2009,17(2):268-278.
[69]Zhang H Y,Hu J H,Qian Q,et al. Small RNA profiles of the rice PTGMS line wuxiang S reveal miRNAs involved in fertility transition[J]. Frontiers in Plant Science,2016,7:514.
[70]Zhou H,Liu Q J,Li J,et al. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA[J]. Cell Research,2012,22(4):649-660.
[71]Li W,Jiang L,Zhou S,et al. Fine mapping of pss1,a pollen semi-sterile gene in rice(Oryza sativa L.)[J]. Theoretical and Applied Genetics,2007,114(5):939-946.
[72]Liu Z H,Bao W J,Liang W Q,et al. Identification of gamyb-4 and analysis of the regulatory role of GAMYB in rice anther development[J]. Journal of Integrative Plant Biology,2010,52(7):670-678.
[73]Deveshwar P,Bovill W D,Sharma R,et al. Analysis of anther transcriptomes to identify genes contributing to meiosis and male gametophyte development in rice[J]. BMC Plant Biology,2011,11:78.

相似文献/References:

[1]马旭俊,刘春娟,吕世博,等.绿色荧光蛋白基因在水稻遗传转化中的应用[J].江苏农业科学,2013,41(04):35.
[2]李岳峰,居立海,张来运,等.水分胁迫下丛枝菌根对水稻/绿豆间作系统 作物生长和氮磷吸收的影响[J].江苏农业科学,2013,41(04):58.
[3]崔月峰,孙国才,王桂艳,等.不同施氮水平和前氮后移措施对水稻产量 及氮素利用率的影响[J].江苏农业科学,2013,41(04):66.
[4]张其蓉,宋发菊,田进山,等.长江中下游稻区水稻区域试验品种抗稻瘟病鉴定与评价[J].江苏农业科学,2013,41(04):92.
[5]王麒,张小明,卞景阳,等.不同插秧密度对黑龙江省第二积温带水稻产量及产量构成的影响[J].江苏农业科学,2013,41(05):60.
 Wang Qi,et al.Effect of different transplanting density on yield and yield component of rice in second temperature zone of Heilongjiang Province[J].Jiangsu Agricultural Sciences,2013,41(10):60.
[6]张国良,张森林,丁秀文,等.基质厚度和含水量对水稻育秧的影响[J].江苏农业科学,2013,41(05):62.
 Zhang Guoliang,et al.Effects of substrate thickness and water content on growth of rice seedlings[J].Jiangsu Agricultural Sciences,2013,41(10):62.
[7]赵忠宝,朱清海.稻-蟹-鳅生态系统的能值分析[J].江苏农业科学,2013,41(05):349.
 Zhao Zhongbao,et al.Emergy analysis of paddy-crab-loach ecosystem[J].Jiangsu Agricultural Sciences,2013,41(10):349.
[8]杨红福,姚克兵,束兆林,等.甲氧基丙烯酸酯类杀菌剂对水稻恶苗病的田间药效[J].江苏农业科学,2014,42(12):166.
 Yang Hongfu,et al.Field efficacy of strobilurin fungicides against rice bakanae disease[J].Jiangsu Agricultural Sciences,2014,42(10):166.
[9]唐成,陈露,安敏敏,等.稻瘟病诱导水稻幼苗叶片氧化还原系统的特征谱变化[J].江苏农业科学,2014,42(12):141.
 Tang Cheng,et al.Characteristic spectral changes of redox homeostasis system in rice seedling leaves induced by rice blast[J].Jiangsu Agricultural Sciences,2014,42(10):141.
[10]万云龙.优质水稻—春甘蓝轮作高效栽培模式[J].江苏农业科学,2014,42(12):90.
 Wan Yunlong.Efficient cultivation mode of high quality rice-spring cabbage rotation[J].Jiangsu Agricultural Sciences,2014,42(10):90.

备注/Memo

备注/Memo:
收稿日期:2018-02-06
基金项目:国家自然科学基金面上项目(编号:31471431);浙江农林大学“青年拔尖人才”培育项目;浙江省大学生科技创新活动计划(新苗人才计划)(编号:2017R412001)。
作者简介:马龙(1990—),男,江苏宿迁人,硕士,从事作物种质资源创新研究,E-mail:987690074@qq.com;共同第一作者:徐薇(1996—),女,浙江绍兴人,从事作物分子育种研究,E-mail:894189824@qq.com。
通信作者:刘庆坡,博士,教授,从事生物信息与作物逆境基因组学研究。E-mail:liuqp@zafu.edu.cn。
更新日期/Last Update: 2019-05-20