|本期目录/Table of Contents|

[1]唐孟泉,黄佳欢,陈瑾元,等.植物的铜稳态研究综述[J].江苏农业科学,2019,47(10):305-311.
 Tang Mengquan,et al.Research progress on copper homeostasis in plants: a review[J].Jiangsu Agricultural Sciences,2019,47(10):305-311.
点击复制

植物的铜稳态研究综述(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第10期
页码:
305-311
栏目:
资源与环境
出版日期:
2019-06-12

文章信息/Info

Title:
Research progress on copper homeostasis in plants: a review
作者:
唐孟泉1 黄佳欢1 陈瑾元1 王琪2 许志茹12
1.东北林业大学生命科学学院,黑龙江哈尔滨 150040; 2.东北林业大学林木遗传育种国家重点实验室,黑龙江哈尔滨 150040
Author(s):
Tang Mengquanet al
关键词:
铜稳态铜转运体铜伴侣蛋白Cu-microRNAs其他含铜蛋白
Keywords:
-
分类号:
Q581;S184
DOI:
-
文献标志码:
A
摘要:
微量元素在植物生长发育过程中是必不可少的,因此研究植物内各种微量元素的稳态具有重要意义。铜在光合作用、呼吸作用、乙烯感应、活性氧清除和细胞壁重塑中发挥重要作用。铜的运输是由一组进化上高度保守的转运蛋白和金属伴侣共同完成的。由于根中转运蛋白的调控和高铜含量土壤非常稀缺,使得植物组织中的铜含量一般不会过高。然而,铜的利用率低会降低植物的生产能力。由于某些功能保守的基因的控制,植物会响应铜缺乏的外界环境。植物主要通过Ctr/COPT铜转运家族转运蛋白家族从细胞外吸收铜,之后由铜伴侣蛋白及P型ATP酶将铜运输到各细胞器中。铜在木质部的运输及铜从衰老叶片到嫩叶与生殖组织中进行的再分配都须要烟酰胺发挥作用。此外,铜的再分配过程须要黄色条纹状(yellow stripe-like,简称YSL)转运体及铜伴侣蛋白CCH的参与,其中CCH蛋白存在于植物的韧皮部。当铜供给不足时,植物中增加铜吸收的系统会被激活,并且使铜能更有效地被利用。一些参与铜调控的小分子RNA会下调某些不重要的铜蛋白的表达量。低铜条件下,主要的铜应答转录因子SPL7既可以激活参与铜吸收的基因的表达,又可以上调某些Cu-microRNAs的表达量。这种调节允许光合自养生物生长所需的最重要的含铜蛋白质(如质体蓝素)在一定的铜浓度范围内保持活性,这更有利于植物的生长。植物中铜过量会造成活性氧的快速积累,活性氧会破坏核酸、氧化蛋白并导致脂质过氧化,从而影响细胞的诸多功能,对细胞产生毒害。细胞内铜过量时会上调金属硫蛋白(metallothionein,简称MT)的表达以减少细胞质中游离铜离子的含量。主要阐述植物中铜稳态的作用及其研究进展,以及植物对铜的吸收与再分配过程,同时对铜在细胞内的传递及细胞内铜稳态的调控进行简单概述。并对大部分重要的含铜蛋白的研究进行简要描述。由于高等植物中铜蛋白的研究报道还较少,因此对植物中铜稳态的研究概述可以加强研究者对含铜蛋白质生物学功能的了解,同时也可以为进一步阐明植物吸收利用铜的分子机制提供依据。
Abstract:
-

参考文献/References:

[1]Foster A W,Osman D,Robinson N J. Metal preferences and metallation[J]. Journal of Biological Chemistry,2014,289(41):28095-28103.
[2]Zhang L,Mcspadden B,Pakrasi H B,et al. Copper-mediated regulation of cytochrome c553 and plastocyanin in the cyanobacterium Synechocystis 6803[J]. The Journal of Biological Chemistry,1992,267(27):19054-19059.
[3]Magnani D,Solioz M. How bacteria handle copper[M]//Nies D H,Silver S. Molecular microbiology of heavy metals. Heidelberg:Springer,2007:259-285.
[4]Tottey S,Rondet S A,Borrelly G P,et al. A copper metallochaperone for photosynthesis and respiration reveals metal-specific targets,interaction with an importer,and alternative sites for copper acquisition[J]. Journal of Biological Chemistry,2002,277(7):5490-5497.
[5]Merchant S S,Allen M D,Kropat J,et al. Between a rock and a hard place:Trace element nutrition in Chlamydomonas[J]. Biochimica et Biophysica Acta - Molecular Cell Research,2006,1763(7):578-594.
[6]Hanikenne M,Krmer U,Demoulin V,et al. A comparative inventory of metal transporters in the green alga Chlamydomonas reinhardtii and the red alga Cyanidioschizon merolae[J]. Plant Physiology,2005,137:428-446.
[7]Kropat J,Tottey S,Birkenbihl R P,et al. A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(51):18730-18735.
[8]Pozo T D,Cambiazo V,González M. Gene expression profiling analysis of copper homeostasis in Arabidopsis thaliana[J]. Biochemical & Biophysical Research Communications,2010,393(2):248-252.
[9]Leng X,Wang X,Li X,et al. Transporters,chaperones,and P-type ATPases controlling grapevine copper homeostasis[J]. Functional & Integrative Genomics,2015,15(6):673-684.
[10]Misra K C. Understanding mineral deposits[M]. Berlin:Springer Netherlands,2000.
[11]Marschner H. Mineral nutrition of higher plants[M]. London:Academic Press,1995.
[12]Epstein E,Bloom A J.Mineral nutrition of plants:principles and perspectives[M]. 2nd. New York:Academic Press,2005.
[13]Navariizzo F,Cestone B,Cavallini A A,et al. Copper excess triggers phospholipase D activity in wheat roots[J]. Phytochemistry,2006,67(12):1232-1242.
[14]Bernal M,Roncel M,Ortega J M,et al. Copper effect on cytochrome b559 of photosystem Ⅱ under photoinhibitory conditions[J]. Physiol Plant,2004,120(4):686-694.
[15]Andrés-colás N,Perea-García A,Puig S,et al.Deregulated copper transport affects arabidopsis development especially in the absence of environmental cycles[J]. Plant Physiology,2010,153:170-184.
[16]Sancenon V,Puig S,Mira H,et al.Identification of a copper transporter family in Arabidopsis thaliana[J]. Plant Molecular Biology,2003,51(4):577-587.
[17]SancenónV,Puig S,Mateu-Andrés I,et al. The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development[J]. Journal of Biological Chemistry,2004,279(15):15348-15355.
[18]Wintz H,Fox T,Wu Y Y,et al. Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis[J]. The Journal of Biological Chemistry,2003,278(48):47644-47653.
[19]Pilon M. Moving copper in plants[J]. New Phytologist,2011,192(2):305-307.
[20]Garcia-Molina A,Andrés-Colás N,Perea-García A,et al. The intracellular Arabidopsis COPT5 transport protein is required for photosynthetic electron transport under severe copper deficiency[J]. The Plant Journal,2011,65(6):848-860.
[21]Klaumann S,Nickolaus S D,Fürst S H,et al. The tonoplast copper transporter COPT5 acts as an exporter and is required for interorgan allocation of copper in Arabidopsis thaliana[J]. New Phytologist,2011,192(2):393-404.
[22]Eisses J F,Kaplan J H. The mechanism of copper uptake mediated by human CTR1,a mutational analysis[J]. Journal of Biological Chemistry,2005,280(44):37159-37168.
[23]Beaudoin J,Thiele D J,Labbé S,et al. Dissection of the relative contribution of the Schizosaccharomyces pombe Ctr4 and Ctr5 proteins to the copper transport and cell surface delivery functions[J]. Microbiology,2011,157(4):1021-1031.
[24]Guo W J,Bundithya W,Goldsbrough P B. Characterization of the Arabidopsis metallothionein gene family:tissue-specific expression and induction during senescence and in response to copper[J]. New Phytologist,2003,159(2):369-381.
[25]Guo W J,Meetam M,Goldsbrough P B. Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance[J]. Plant Physiology,2008,146(4):1697-1706.
[26]Shin L J,Lo J C,Yeh K C. Copper chaperone antioxidant protein1 is essential for copper homeostasis[J]. Plant Physiology,2012,159(3):1099-1110.
[27]Andrés-Colás N,Sancenón V,Rodríguez-Navarro S,et al. The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots[J]. The Plant Journal,2006,45(2):225-236.
[28]Pich A,Scholz G. Translocation of copper and other micronutrients in tomato plants (Lycopersicon esculentum Mill.):nicotianamine-stimulated copper transport in the xylem[J]. Journal of Experimental Botany,1996,47(294):41-47.
[29]Takahashi M,Terada Y,Nakai I,et al. Role of nicotianamine in the intracellular delivery of metals and plant reproductive development[J]. Plant Cell,2003,15(6):1263-1280.
[30]Briat J F,Curie C,Gaymard F. Iron utilization and metabolism in plants[J]. Current Opinion in Plant Biology,2007,10(3):276-282.
[31]Chu H H,Chiecko J,Punshon T,et al. Successful reproduction requires the function of Arabidopsis YELLOW STRIPE-LIKE1 and YELLOW STRIPE-LIKE3 metal-nicotianamine transporters in both vegetative and reproductive structures[J]. Plant Physiology,2010,154(1):197-210.
[32]Bemal M,Casero D,Singh V,et al. Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis[J]. Plant Cell,2012,24(2):738-761.
[33]Chen C C,Chen Y Y,Tang I C,et al. Arabidopsis SUMO E3 ligase SIZ1 is involved in excess copper tolerance[J]. Plant Physiology,2011,156(4):2225-2234.
[34]Waters B M,Grusak M A. Whole-plant mineral partitioning throughout the life cycle in Arabidopsis thaliana ecotypes Columbia,Landsberg erecta,Cape Verde Islands,and the mutant line ysl1ysl3[J]. New Phytologist,2008,177(2):389-405.
[35]Himelblau E,Mira H,Lin S J,et al. Identification of a functional homolog of the yeast copper homeostasis gene ATX1 from Arabidopsis[J]. Plant Physiology,1998,117(4):1227-1234.
[36]Mira H,Martínez N,Pearrubia L. Expression of a vegetative-storage-protein gene from Arabidopsis is regulated by copper,senescence and ozone[J]. Planta,2002,214(6):939-946.
[37]Williams L E,Mills R F. P1B-ATPases - an ancient family of transition metal pumps with diverse functions in plants[J]. Trends in Plant Science,2005,10(10):491-502.
[38]Lutsenko S,Barnes N L,Bartee M Y,et al. Function and regulation of human copper-transporting ATPases[J]. Physiological Reviews,2007,87(3):1011-1046.
[39]Binder B M,Rodríguez F I,Bleecker A B. The copper transporter RAN1 is essential for biogenesis of ethylene receptors in Arabidopsis[J]. Journal of Biological Chemistry,2010,285(48):37263-37270.
[40]Li W,Lacey R F,Ye Y J,et al. Triplin,a small molecule,reveals copper ion transport in ethylene signaling from ATX1 to RAN1[J]. Plos Genetics,2017,13(4):e1006703.
[41]Yamamoto A,Bhuiyan M N,Waditee R,et al. Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants[J]. Journal of Experimental Botany,2005,56(417):1785-1796.
[42]Dong J,Kim S T,Lord E M. Plantacyanin plays a role in reproduction in Arabidopsis[J]. Plant Physiology,2005,138(2):778-789.
[43]Puig S,Mira H,Dorcey E,et al. Higher plants possess two different types of ATX1-like copper chaperones[J]. Biochemical & Biophysical Research Communications,2007,354(2):385-390.
[44]Heo D H,Baek I J,Kang H J,et al. Cd2+ binds to Atx1 and affects the physical interaction between Atx1 and Ccc2 in Saccharomyces cerevisiae[J]. Biotechnology Letters,2012,34(2):303-307.
[45]Zhu H N,Shipp E,Sanchez R J,et al. Cobalt2+ binding to human and tomato copper chaperone for superoxide dismutase:implications for the metal ion transfer mechanism[J]. Biochemistry,2000,39(18):5413-5421.
[46]Trindade L M,Horvath B M,Bergervoet M J,et al. Isolation of a gene encoding a copper chaperone for the copper/zinc superoxide dismutase and characterization of its promoter in potato[J]. Plant Physiology,2003,133(2):618-629.
[47]Ruzsa S M,Scandalios J G. Altered Cu metabolism and differential transcription of Cu/ZnSod genes in a Cu/ZnSOD-deficient mutant of maize:evidence for a Cu-responsive transcription factor[J]. Biochemistry,2003,42(6):1508-1516.
[48]Wintz H,Vulpe D C. Plant copper chaperones[J]. Biochemical Society Transactions,2002,30(4):732-735.
[49]Chu C C,Lee W C,Guo W Y,et al. A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in Arabidopsis[J]. Plant Physiology,2005,139(1):425-436.
[50]Abdelghany S E,Burkhead J L,Gogolin K A,et al. AtCCS is a functional homolog of the yeast copper chaperone Ccs1/Lys7[J]. Febs Letters,2005,579(11):2307-2312.
[51]Huang C H,Kuo W Y,Weiss C,et al. Copper chaperone-dependent and -independent activation of three copper-zinc superoxide dismutase homologs localized in different cellular compartments in Arabidopsis[J]. Plant Physiology,2012,158(2):737-746.
[52]Fukuoka M,Tokuda E,Nakagome K,et al. An essential role of N-terminal domain of copper chaperone in the enzymatic activation of Cu/Zn-superoxide dismutase[J]. Journal of Inorganic Biochemistry,2017,175:208-216.
[53]Pierrel F,Cobine P A,Winge D R. Metal Ion availability in mitochondria[J]. Biometals,2007,20(3-4):675-682.
[54]Carr H S,Winge D R. Assembly of cytochrome c oxidase within the mitochondrion[J]. Accounts of Chemical Research,2003,36(5):309-316.
[55]Balandin T,Castresana C. AtCOX17,an Arabidopsis homolog of the yeast copper chaperone COX17[J]. Plant Physiology,2002,129(4):1852-1857.
[56]Garcia L,Welchen E,Gey U,et al. The cytochrome c oxidase biogenesis factor AtCOX17 modulates stress responses in Arabidopsis[J]. Plant Cell & Environment,2016,39(3):628-644.
[57]Molina-Heredia F P,Wastl J,Navarro J A,et al. Photosynthesis:a new function for an old cytochrome?[J]. Nature,2003,424(6944):33-34.
[58]Weigel M,Varotto C,Pesaresi P,et al. Plastocyanin is indispensable for photosynthetic electron flow in Arabidopsis thaliana[J]. The Journal of Biological Chemistry,2003,278(33):31286-31289.
[59]Bernal M,Testillano P S,Alfonso M,et al. Identification and subcellular localization of the soybean copper P1B-ATPase GmHMA8 transporter[J]. Journal of Structural Biology,2007,158(1):46-58.
[60]Abdelghany S E,Müllermoulé P,Niyogi K K,et al. Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts[J]. The Plant Cell,2005,17(4):1233-1251.
[61]Bernal M,Ramiro M V,Cases R,et al. Excess copper effect on growth,chloroplast ultrastructure,oxygen-evolution activity and chlorophyll fluorescence in Glycine max cell suspensions[J]. Physiologia Plantarum,2006,127(2):312-325.
[62]Arnesano F,Banci L,Bertini I,et al. Metallochaperones and metal-transporting ATPases:a comparative analysis of sequences and structures[J]. Genome Research,2002,12(2):255-271.
[63]Borrelly G P,Rondet S A,Tottey S,et al. Chimeras of P1-type ATPases and their transcriptional regulators:contributions of a cytosolic amino-terminal domain to metal specificity[J]. Molecular Microbiology,2004,53(1):217-227.
[64]Yamasaki H,Hayashi M,Fukazawa M,et al. SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis[J]. The Plant Cell,2009,21(1):347-361.
[65]Waters B M,Chu H H,Didonato R J,et al. Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds[J]. Plant Physiology,2006,141(4):1446-1458.
[66]Cohu C M,Pilon M. Regulation of superoxide dismutase expression by copper availability[J]. Physiologia Plantarum,2007,129(4):747-755.
[67]Abdelghany S E,Pilon M. MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis[J]. The Journal of Biological Chemistry,2008,283(23):15932-15945.
[68]Dugas D V,Bartel B. Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases[J]. Plant Molecular Biology,2008,67(4):403-417.
[69]Yamasaki H,Abdelghany S E,Cohu C M,et al. Regulation of copper homeostasis by micro-RNA in Arabidopsis[J]. The Journal of Biological Chemistry,2007,282(22):16369-16378.
[70]Sunkar R,Kapoor A,Zhu J K. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance[J]. The Plant Cell,2006,18(8):2051-2065.
[71]Berthet S,Demontcaulet N,Pollet B,et al. Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems[J]. The Plant Cell,2011,23(3):1124-1137.
[72]Ravet K,Danford F L,Dihle A,et al. Spatiotemporal analysis of copper homeostasis in Populus trichocarpa reveals an integrated molecular remodeling for a preferential allocation of copper to plastocyanin in the chloroplasts of developing leaves[J]. Plant Physiology,2011,157(3):1300-1312.
[73]Cardon G,Hhmann S,Klein J,et al. Molecular characterisation of the Arabidopsis SBP-box genes[J]. Gene,1999,237(1):91-104.
[74]Perea-García A,Andrés-Bordería A,Andrés S M D,et al. Modulation of copper deficiency responses by diurnal and circadian rhythms in Arabidopsis thaliana[J]. Journal of Experimental Botany,2016,67(1):391-403.
[75]Zhang H,Zhao X,Li J,et al. MicroRNA408 is critical for the HY5-SPL7 gene network that mediates the coordinated response to light and copper[J]. Plant Cell,2014,26(12):4933-4953.
[76]Pesaresi P,Scharfenberg M,Weigel M,et al. Mutants,overexpressors,and interactors of Arabidopsis plastocyanin isoforms:revised roles of plastocyanin in photosynthetic electron flow and thylakoid redox state[J]. Molecular Plant,2009,2(2):236-248.
[77]Abdel-Ghany S E. Contribution of plastocyanin isoforms to photosynthesis and copper homeostasis in Arabidopsis thaliana,grown at different copper regimes[J]. Planta,2008,229(4):767-779.
[78]Welchen E,Chan R L,Gonzalez D H. The promoter of the Arabidopsis nuclear gene COX5b-1,encoding subunit 5b of the mitochondrial cytochrome c oxidase,directs tissue-specific expression by a combination of positive and negative regulatory elements[J]. Journal of Experimental Botany,2004,55(405):1997-2004.
[79]Kliebenstein D J,Monde R A,Last R L. Superoxide dismutase in Arabidopsis:an eclectic enzyme family with disparate regulation and protein localization[J]. Plant Physiology,1998,118(2):637-650.
[80]Chen Y F,Randlett M D,Findell J L,et al. Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis[J]. Journal of Biological Chemistry,2002,277(22):19861-19866.
[81]Nakamura K,Go N. Function and molecular evolution of multicopper blue proteins[J]. Cellular & Molecular Life Sciences,2005,62(18):2050-2066.
[82]Cai X N,Davis E J,Ballif J,et al. Mutant identification and characterization of the laccase gene family in Arabidopsis[J]. Journal of Experimental Botany,2006,57(11):2563-2569.
[83]Frébort I,Sebela M,Svendsen I,et al. Molecular mode of interaction of plant amine oxidase with the mechanism-based inhibitor 2-butyne-1,4-diamine[J]. The FEBS Journal,2000,267(5):1423-1433.
[84]An Z,Jing W,Liu Y,et al. Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba[J]. Journal of Experimental Botany,2008,59(4):815-825.
[85]Marina M,Maiale S J,Rossi F R,et al. Apoplastic polyamine oxidation plays different roles in local responses of tobacco to infection by the necrotrophic fungus Sclerotinia sclerotiorum and the biotrophic bacterium Pseudomonas viridiflava[J]. Plant Physiology,2008,147(4):2164-2178.
[86]Arnon D I. Copper enzymes in isolated chloroplasts. Polyphenoloxidse in Beta vulgaris[J]. Plant Physiology,1949,24(1):1-15.
[87]Mayer A M. Polyphenol oxidases in plants and fungi:going places? A review[J]. Phytochemistry,2006,67(21):2318-2331.
[88]Schubert M,Petersson U A,Haas B J,et al. Proteome map of the chloroplast lumen of Arabidopsis thaliana[J]. Journal of Biological Chemistry,2002,277(10):8354-8365.

相似文献/References:

[1]奚琦,许志茹,王琪,等.植物铜稳态相关miRNAs的研究进展[J].江苏农业科学,2017,45(09):5.
 Xi Qi,et al.Research progress on miRNAs related to copper homeostasis in plant[J].Jiangsu Agricultural Sciences,2017,45(10):5.

备注/Memo

备注/Memo:
收稿日期:2018-03-06
基金项目:国家自然科学基金面上项目(编号:31470664);中央高校基本科研业务费专项资金项目(编号:2572017EA05)。
作者简介:唐孟泉(1993—),男,湖南永州人,硕士研究生,主要从事植物铜伴侣蛋白研究。E-mail:1426926639@qq.com。
通信作者:许志茹,博士,副教授,主要从事植物铜体内平衡及调节机理、花青素合成的分子机理研究。E-mail:xuzhiru2003@126.com。
更新日期/Last Update: 2019-05-20