|本期目录/Table of Contents|

[1]李菁乔,张文静,秦运琦,等.铬在土壤中环境行为及修复研究进展[J].江苏农业科学,2019,47(12):36-42.
 Li Jingqiao,et al.Research progress on environmental behavior and remediation of chromium in soils[J].Jiangsu Agricultural Sciences,2019,47(12):36-42.
点击复制

铬在土壤中环境行为及修复研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第12期
页码:
36-42
栏目:
专论与综述
出版日期:
2019-07-10

文章信息/Info

Title:
Research progress on environmental behavior and remediation of chromium in soils
作者:
李菁乔1 张文静1 秦运琦1 王珩安2 范宁3
1.吉林大学地下水资源与环境教育部重点实验室/吉林大学环境与资源学院,吉林长春 130021;
2.东北师范大学附属中学,吉林长春 130022; 3.山东省淄博市水文局,山东淄博 255000
Author(s):
Li Jingqiaoet al
关键词:
铬污染土壤胶体环境行为修复方法
Keywords:
-
分类号:
X53
DOI:
-
文献标志码:
A
摘要:
重金属铬(Cr)对人体健康造成极大危害,Cr污染土壤修复技术研究对于改善土壤及地下水土环境有重大意义。本文介绍重金属Cr在土壤中的环境行为及其影响因素,揭示Cr在土壤中的环境行为主要包括吸附、迁移、转氧化还原和沉淀溶解等。影响重金属Cr在土壤中环境行为的因素主要为土壤pH值、土壤氧化还原电位(Eh值)、土壤类型及土壤有机质。结合近期研究热点,探究胶体与Cr在协同作用下的迁移机制。在此分析基础上,总结了国内外已有Cr污染土壤的最新修复研究进展并分析其适用性。目前Cr污染土壤修复技术日益丰富,修复材料趋于对环境友好且多样化,但由于大多数修复技术研究停留于试验阶段,对于实际场地中土壤环境的复杂性和多变性,Cr污染土壤修复技术遴选及其应用还需进一步探讨。
Abstract:
-

参考文献/References:

[1]Kim H T,Lee T G. A simultaneous stabilization and solidification of the top five most toxic heavy metals (Hg,Pb,As,Cr,and Cd)[J]. Chemosphere,2017,178:479-485.
[2]Fu R B,Wen D D,Xia X Q,et al. Electrokinetic remediation of chromium (Cr)-contaminated soil with citric acid (CA) and polyaspartic acid (PASP) as electrolytes[J]. Chemical Engineering Journal,2017,316:601-608.
[3]Li Y J,Wang W Y,Zhou L Q,et al. Remediation of hexavalent chromium spiked soil by using synthesized Iron sulfide particles[J]. Chemosphere,2016,169:131-138.
[4]Li D,Sun D L,Hu S Y,et al. Conceptual design and experiments of electrochemistry-flushing technology for the remediation of historically Cr(Ⅵ)-contaminated soil[J]. Chemosphere,2016,144:1823-1830.
[5]Cameselle C,Gouveia S. Phytoremediation of mixed contaminated soil enhanced with electric current[J]. Journal of Hazardous Materials,2019,361:95-102.
[6]Qu M M,Chen J M,Huang Q Q,et al. Bioremediation of hexavalent chromium contaminated soil by a bioleaching system with weak magnetic fields[J]. International Biodeterioration & Biodegradation,2018,128:41-47.
[7]Naz A,Mishra B K,Gupta S K. Human health risk assessment of chromium in drinking water:a case study of Sukinda chromite mine,Odisha,India[J]. Exposure and Health,2016,8(2):253-264.
[8]Liu L W,Li W,Song W P,et al. Remediation techniques for heavy metal-contaminated soils:principles and applicability[J]. Science of the Total Environment,2018,633:206-219.
[9]Wiseman C L S,Zereini F,Püttmann W. Metal and metalloid accumulation in cultivated urban soils:a medium-term study of trends in Toronto,Canada[J]. Science of the Total Environment,2015,538:564.
[10]Sakizadeh M,Mirzaei R,Ghorbani H. The extent and prediction of heavy metal pollution in soils of Shahrood and Damghan,Iran[J]. Bulletin of Environmental Contamination and Toxicology,2015,95(6):770-776.
[11]Kunhikrishnan A,Choppala G,Seshadri B A,et al. Impact of wastewater derived dissolved organic carbon on reduction,mobility,and bioavailability of As(Ⅴ) and Cr(Ⅵ) in contaminated soils[J]. Journal of Environmental Management,2017,186(2):183-191.
[12]孟凡生. 中国铬渣污染场地土壤污染特征[J]. 环境污染与防治,2016,38(6):50-53.
[13]骆和东,吴雨然,姜艳芳. 我国食品中铬污染现状及健康风险[J]. 中国食品卫生杂志,2015,27(6):717-721.
[14]刘峥颢,赵志磊,夏立娅,等. 市场中食品添加剂明胶及添加明胶的食品中铬含量本底调查[J]. 食品科技,2010(2):224-227.
[15]王晓波,李建国,刘冬英,等. 广州市市售大米中铬污染水平及健康风险评价[J]. 中国食品卫生杂志,2015,27(1):75-78.
[16]Tessier A,Campbell P G C,Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical chemistry,1979,51(7):844-851.
[17]邓红艳,陈刚才. 铬污染土壤的微生物修复技术研究进展[J]. 地球与环境,2012,40(3):466-472.
[18]Guemiza K,Coudert L,Metahni S,et al. Treatment technologies used for the removal of As,Cr,Cu,PCP and/or PCDD/F from contaminated soil:a review[J]. Journal of Hazardous Materials,2017,333:194.
[19]Viti C,Marchi E,Decorosi F,et al. Molecular mechanisms of Cr(Ⅵ) resistance in bacteria and fungi[J]. FEMS Microbiology Reviews,2014,38(4):633-659.
[20]易秀,李五福. 黄土性土壤对Cr(Ⅵ)的吸附还原动力学研究[J]. 干旱区资源与环境,2005,19(3):141-144.
[21]张蕊. 六价铬在土壤中迁移转化影响因素研究及风险评价[D]. 长春:吉林大学,2013.
[22]戴宇,杨重法,郑袁明. 土壤-植物系统中铬的环境行为及其毒性评价[J]. 环境科学,2009,30(11):3432-3440.
[23]陈英旭,骆永明,朱永官,等. 土壤中铬的化学行为研究Ⅴ.土壤对Cr(Ⅲ)吸附和沉淀作用的影响因素[J]. 土壤学报,1994,31(1):77-85.
[24]王成文,许模,张俊杰,等. 土壤pH和Eh对重金属铬(Ⅵ)纵向迁移及转化的影响[J]. 环境工程学报,2016,10(10):6035-6041.
[25]胡婧琳,林雅洁,朱钢. 地下环境中铬迁移转化机制及修复技术综述[J]. 环境工程,2016,34(增刊1):1053-1056.
[26]于卫花,张焕祯,王智丽,等. 土壤吸附铬的特性及影响因素研究进展[J]. 环境保护科学,2013,39(2):38-41,46.
[27]朱月珍. 土壤中六价铬的吸附与还原[J]. 环境化学,1982(5):359-364.
[28]王亚军,朱琨,王进喜. 腐殖酸对Cr在污染土壤中吸附形态影响的研究[J]. 腐植酸,2007(5):21-26.
[29]张文静,周晶晶,刘丹,等. 胶体在地下水中的环境行为特征及其研究方法探讨[J]. 水科学进展,2016,27(4):629-638.
[30]Xiong T,Yuan X Z,Wang H,et al. Implication of graphene oxide in Cd-contaminated soil:a case study of bacterial communities[J]. Journal of Environmental Management,2018,205:99-106.
[31]McBride,Murray B. Cadmium uptake by crops estimated from soil total Cd and pH[J]. Soil Science,2002,167(1):62-67.
[32]周晶晶. 人工回灌条件下地下水中天然胶体与Fe的相互作用机制及其模拟预测[D]. 长春:吉林大学,2017.
[33]王燕,李贤庆,宋志宏,等. 土壤重金属污染及生物修复研究进展[J]. 安全与环境学报,2009,9(3):60-65.
[34]刘涛,祝方,赵晋宇,等. 降雨条件下纳米零价铁镍对污染土壤中六价铬迁移的影响[J]. 环境化学,2017,36(4):812-820.
[35]杨悦锁,王园园,宋晓明,等. 土壤和地下水环境中胶体与污染物共迁移研究进展[J]. 化工学报,2017,68(1):23-36.
[36]He X,Zhong P,Qiu X H. Remediation of hexavalent chromium in contaminated soil by Fe(Ⅱ)-Al layered double hydroxide[J]. Chemosphere,2018,210:1157-1166.
[37]Zhao L,Ding Z L,Sima J,et al. Development of phosphate rock integrated with iron amendment for simultaneous immobilization of Zn and Cr(Ⅵ) in an electroplating contaminated soil[J]. Chemosphere,2017,182:15-21.
[38]李喜林,张佳雯,陈冬琴,等. 水泥固化铬污染土强度及浸出试验研究[J]. 硅酸盐通报,2017,36(3):979-983,990.
[39]温俊国,朱宇恩,时伟宇,等. 三种修复剂对铬污染土壤的修复效果[J]. 环境工程,2017,35(9):181-185.
[40]Ballesteros S,Rincón J M,Rincón-Mora B,et al. Vitrification of urban soil contamination by hexavalent chromium[J]. Journal of Geochemical Exploration,2017,174:132-139.
[41]Xue W,Huang D L,Zeng G M,et al. Performance and toxicity assessment of nanoscale zero valent iron particles in the remediation of contaminated soil:A review[J]. Chemosphere,2018,210:1145-1156.
[42]张文通,陈勇,陈超,等. 纳米TiO2光催化材料在环境土壤修复中的应用研究进展[J]. 材料导报,2015(11):49-54.
[43]Shen W J,Mu Y,Xiao T,et al. Magnetic Fe3O4-FeS nanocomposites with promoted Cr(Ⅵ) removal performance[J]. Chemical Engineering Journal,2016,285:57-68.
[44]Wang D,Guo W,Zhang G,et al. Remediation of Cr(Ⅵ)-contaminated acid soil using a nanocomposite[J]. ACS Sustainable Chemistry & Engineering,2017,5(3):2246-2254.
[45]He L L,Wang M,Zhang G L,et al. Remediation of Cr(Ⅵ) contaminated soil using long-duration sodium thiosulfate supported by micro-nano networks[J]. Journal of Hazardous Materials,2015,294:64-69.
[46]Li Y Y,Cundy A B,Feng J X,et al. Remediation of hexavalent chromium contamination in chromite ore processing residue by sodium dithionite and sodium phosphate addition and its mechanism[J]. Journal of Environmental Management,2017,192:100-106.
[47]杨武,郭琳,陈明,等. 某铬盐厂Cr(Ⅵ)污染土壤还原稳定化效果研究[J]. 环境保护科学,2018,44(4):114-120.
[48]张辉,付融冰,郭小品,等. 铬污染土壤的还原稳定化修复[J]. 环境工程学报,2017,11(11):6163-6168.
[49]Zhu F,Li L W,Ma S Y,et al. Effect factors,kinetics and thermodynamics of remediation in the chromium contaminated soils by nanoscale zero valent Fe/Cu bimetallic particles[J]. Chemical Engineering Journal,2016,302:663-669.
[50]Zhu F,Li L,Ren W,et al. Effect of pH,temperature,humic acid and coexisting anions on reduction of Cr(Ⅵ) in the soil leachate by nZⅥ/Ni bimetal material[J]. Environmental Pollution,2017,227:444-450.
[51]Wang C,Deng H,Zhao F. The remediation of chromium (Ⅵ)-contaminated soils using microbial fuel cells[J]. Soil & Sediment Contamination,2016,25(1):1-12.
[52]Zhou M,Xu J M,Zhu S F,et al. Exchange electrode-electrokinetic remediation of Cr-contaminated soil using solar energy[J]. Separation and Purification Technology,2018,190:297-306.
[53]Wu J N,Zhang J,Xiao C Z. Focus on factors affecting pH,flow of Cr and transformation between Cr(Ⅵ) and Cr(Ⅲ) in the soil with different electrolytes[J]. Electrochimica Acta,2016,211:652-662.
[54]Hu S Y,Li D,Huang C,et al. A continuous electrocoagulation system with pH auto-adjusting by endogenous products to treat Cr(Ⅵ)-contaminated soil flushing solution[J]. Separation and Purification Technology,2017,189:213-219.
[55]Lytras G,Lytras C,Argyropoulou D,et al. A novel two-phase bioreactor for microbial hexavalent chromium removal from wastewater[J]. Journal of Hazardous Materials,2017,336:41-51.
[56]Palma L D,Mancini D,Petrucci E. Experimental assessment of chromium mobilization from polluted soil by washing[J]. Chemical Engineering Transactions,2012,28:145-150.
[57]Li D,Ji G,Hu J,et al. Remediation strategy and electrochemistry flushing & reduction technology for real Cr (Ⅵ)-contaminated soils[J]. Chemical Engineering Journal,2018,334:1281-1288.
[58]张佳,陈鸿汉,张岩坤,等. 柠檬酸淋洗去除土壤中铬的实验研究[J]. 环境科学学报,2015,35(7):2247-2253.
[59]刘帅霞,孙哲,曹瑞雪. 秸秆-复合菌-污泥联合修复铬污染土壤技术[J]. 环境工程学报,2017(10):5696-5702.
[60]叶斌晖,罗亚婷,龙碧波,等. 草酸青霉SL2对高浓度铬污染土壤的生物淋洗及胞内铬形态转化研究[J]. 环境科学学报,2018,38(7):2825-2832.
[61]张学洪,罗亚平,黄海涛,等. 一种新发现的湿生铬超积累植物——李氏禾(Leersia hexandra Swartz)[J]. 生态学报,2006,26(3):950-953.
[62]朱优清,刘增俊,夏旭,等. 甘蔗渣修复铬污染土壤的效果[J]. 环境工程学报,2017,11(4):2568-2574.
[63]Krishna K R,Philip L. Bioremediation of Cr(Ⅵ) in contaminated soils[J]. Journal of Hazardous Materials,2005,121(1/2/3):109-117.
[64]Herath I,Iqbal M,Al-Wabel M I,et al. Bioenergy-derived waste biochar for reducing mobility,bioavailability,and phytotoxicity of chromium in anthropized tannery soil[J]. Journal of Soils and Sediments,2017,17(3):731-740.
[65]孟繁健,朱宇恩,李华,等. 改性生物炭负载nZⅥ对土壤Cr(Ⅵ)的修复差异研究[J]. 环境科学学报,2017,37(12):4715-4723.
[66]Su H J,Fang Z Q,Tsang P E,et al. Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent Iron nanoparticles[J]. Journal of Hazardous Materials,2016,318:533-540.
[67]Lyu H,Zhao H,Tang J C,et al. Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale Iron sulfide composite[J]. Chemosphere,2018,194:360-369.
[68]Liu W J,Ling L L,Wang Y Y,et al. One-pot high yield synthesis of Ag nanoparticle-embedded biochar hybrid materials from waste biomass for catalytic Cr (Ⅵ) reduction[J]. Environmental Science:Nano,2016,3(4):745-753.
[69]Zhang Q R,Li Y X,Yang Q G,et al. Distinguished Cr(Ⅵ) capture with rapid and superior capability using polydopamine microsphere:behavior and mechanism[J]. Journal of Hazardous Materials,2018,342:732-740.

相似文献/References:

[1]金熠,徐玲娥,盛晟,等.施有机肥对稻田剖面土壤胶体颗粒形态及胶体磷含量的影响[J].江苏农业科学,2019,47(23):269.
 Jin Yi,et al.Impacts of organic fertilizer on colloidal particle morphology and phosphorus contents in paddy soil profiles[J].Jiangsu Agricultural Sciences,2019,47(12):269.

备注/Memo

备注/Memo:
收稿日期:2019-03-08
基金项目:国家自然科学基金(编号:41472215)。
作者简介:李菁乔(1994—),女,辽宁鞍山人,硕士研究生,研究方向为污染水文地质。E-mail:779382693@qq.com。
通信作者:张文静,博士,教授,博士生导师,研究方向为污染水文地质。E-mail:zhangwenjing80@hotmail.com。
更新日期/Last Update: 2019-06-20