|本期目录/Table of Contents|

[1]陈晓峰,丛山,王百川,等.大白菜微管与灰霉菌抗性研究[J].江苏农业科学,2019,47(14):124-127.
 Chen Xiaofeng,et al.Relationship between microtubule and plant resistance against Botrytis cinerea in Brassica rapa ssp. pekinensis[J].Jiangsu Agricultural Sciences,2019,47(14):124-127.
点击复制

大白菜微管与灰霉菌抗性研究(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第14期
页码:
124-127
栏目:
植物保护
出版日期:
2019-08-10

文章信息/Info

Title:
Relationship between microtubule and plant resistance against Botrytis cinerea in Brassica rapa ssp. pekinensis
作者:
陈晓峰1 丛山2 王百川1 隋好林1
1.中国农业大学烟台研究院,山东烟台 264670; 2.山东省烟台市农业推广中心,山东烟台 264001
Author(s):
Chen Xiaofenget al
关键词:
大白菜灰霉菌叶片细胞微管α-微管蛋白互作动态结构变化作用机制
Keywords:
-
分类号:
S436.341
DOI:
-
文献标志码:
A
摘要:
对灰霉菌(Botrytis cinerea)诱导抗、感大白菜叶片α-微管蛋白基因诱导表达的特点及微管动态结构变化进行研究。结果表明,灰霉菌接种后大白菜中4种α-微管蛋白基因均具有上调表达特点,且抗病品种较感病品种诱导表达明显。叶片细胞微管免疫荧光观测发现,接种48、96 h后抗病品种较感病品种微管骨架受病原菌侵染影响较小,结构变化不明显。研究结果说明微管在植物对抗真菌病原菌侵染中具有一定的作用。
Abstract:
-

参考文献/References:

[1]Chan J,Eder M,Crowell E F,et al. Microtubules and CESA tracks at the inner epidermal wall align independently of those on the outer wall of light-grown Arabidopsis hypocotyls[J]. Journal of Cell Science,2011,124(7):1088-1094.
[2]Zhang Y W,Jin D,Xu C,et al. Regulation of bolting and identification of the α-tubulin gene family in Brassica rapa L. ssp pekinensis[J]. Genetics and Molecular Research,2016,15(1):15017507.
[3]张静宜,侯喜林,史公军,等. 白菜组织细胞微管间接免疫荧光检测体系的优化[J]. 园艺学报,2007,34(6):1551-1554.
[4]饶国栋,张建国. 植物微管蛋白基因研究进展[J]. 世界林业研究,2013,26(3):17-20.
[5]Kopczak S D,Haas N A,Hussey P J,et al. The small genome of Arabidopsis contains at least six expressed α-tubulin genes[J]. Plant Cell,1992,4(5):539-547.
[6]Parrotta L,Cai G,Cresti M. Changes in the accumulation of α- and β-tubulin during bud development in Vitis vinifera L.[J]. Planta,2010,231(2):277-291.
[7]Oakley R V,Wang Y S,Ramakrishna W,et al. Differential expansion and expression of α- and β-tubulin gene families in Populus[J]. Plant Physiology,2007,145(3):961-973.
[8]Dixon D C,Seagull R W,Triplett B A. Changes in the accumulation of α- and β-tubulin isotypes during cotton fiber development[J]. Plant Physiology,1994,105(4):1347-1353.
[9]Nogales E . A structural view of microtubule dynamics[J]. Cellular & Molecular Life Sciences Cmls,1999,56(1/2):133-142.
[10]Nogales E,Wolf S G,Downing K H. Structure of the alpha-beta tubulin dimer by electron crystallography[J]. Nature,1998,391(6663):199-203.
[11]Nogales E,Whittaker M,Milligan R A,et al. High-resolution model of the microtubule[J]. Cell,1999,96(1):79-88.
[12]Carpenter J L,Ploense S E,Snustad D P,et al. Preferential expression of an α-tubulin gene of Arabidopsis in pollen[J]. Plant Cell,1992,4(5):557-571.
[13]姚晶,禹坷,陈艳利,等. 微管骨架在辣椒-黄瓜炭疽病菌非寄主互作中的作用[J]. 植物病理学报,2013,43(2):136-142.
[14]Skalamera D,Heath M C. Changes in the cytoskeleton accompanying infection-induced nuclear movements and the hypersensitive response in plant cells invaded by rust fungi[J]. Plant Journal,1998,16(2):191-200.
[15]Schmelzer E. Cell polarization,a crucial process in fungal defense[J]. Trends in Plant Science,2002,7(9):411-415.
[16]Christopher-Kozjan R,Heath M C. Cytological and pharmacological evidence that biotrophic fungi trigger different cell death execution processes in host and non-host cells during the hypersensitive response[J]. Physiological and Molecular Plant Pathology,2003,62(5):265-275.
[17]Hardham A R,Jones D A,Takemoto D. Cytoskeleton and cell wall function in penetration resistance[J]. Current Opinion in Plant Biology,2007,10(4):342-348.
[18]Kobayashi I,Kobayashi Y,Yamaoka N,et al. Recognition of a pathogen and a nonpathogen by barley coleoptile cells. Ⅲ. Responses of microtubules and actin filaments in barley coleoptile cells to penetration attempts[J]. Canadian Journal of Botany,1992,70(9):1815-1823.
[19]Takemoto D,Hardham A R. The cytoskeleton as a regulator and target of biotic interactions in plants[J]. Plant Physiology,2004,136(4):3864-3876.
[20]Takemoto D,Jones D A,Hardham A R. GFP-tagging of cell components reveals the dynamics of subcellular reorganization in response to infection of Arabidopsis by oomycete pathogens[J]. Plant Journal,2003,33(4):775-792.
[21]Münch S,Lingner U,Floss D S,et al. The hemi-biotrophic lifestyle of Colletotrichum species[J]. Journal of Plant Physiology,2008,165(1):41-51.
[22]左海,王海燕,马青. 微管骨架在小麦抗条锈菌侵染中作用的研究[C]. 中国植物病理学会2012年学术年会. 北京:中国农业科学技术出版社,2012.
[23]郝心愿,李红莉,禹珂,等. 微丝骨架解聚剂在小麦-黄瓜白粉菌非寄主互作中的作用[J]. 中国农业科学,2011,44(2):291-298.
[24]Li H L,Wang H Y,Hao X Y,et al. Effects of microtubule polymerization inhibitor on the hypersensitive response of wheat induced by the non-host pathogen Sphaerotheca fuliginea[J]. Agricultural Sciences in China,2010,9(3):378-382.
[25]Song X H,Ma Q,Hao X Y,et al. Roles of the actin cytoskeleton and an actin-binding protein in wheat resistance against Puccivia striiformis f. sp. tritici[J]. Protoplasma,2012,249(1):99-106.
[26]马清华,陈晓峰,牟晋华,等. 灰霉菌侵染大白菜后ADF7ADF10基因表达分析[J]. 南京农业大学学报,2015,38(5):742-747.
[27]王利英. 不结球白菜黑斑病抗性机制初步研究[D]. 南京:南京农业大学,2008:40.
[28]陈晓峰,隋好林,马清华,等. 霜霉病菌诱导大白菜几丁质酶和葡聚糖酶基因的表达[J]. 山东农业科学,2015,47(2):96-99.

相似文献/References:

[1]颜廷帅,姜振升,侯文通,等.缺铁及不同铁源对水培大白菜生物量、光合参数和矿质元素含量的影响[J].江苏农业科学,2016,44(06):275.
 Yan Tingshuai,et al.Effects of iron deficiency and different iron sources on biomass, photosynthetic parameters and mineral element contents of hydroponic cabbage[J].Jiangsu Agricultural Sciences,2016,44(14):275.
[2]高文瑞,李德翠,徐刚,等.CO2施肥对大白菜生长及光合的影响[J].江苏农业科学,2016,44(09):228.
 Gao Wenrui,et al.Effects of CO2 enrichment on growth and photosynthesis of Chinese cabbage[J].Jiangsu Agricultural Sciences,2016,44(14):228.
[3]束兆林,杨红福,陈红州,等.胶红酵母(Rhodotorula mucilaginosa)对梨果采后青霉病、灰霉病的控制效果[J].江苏农业科学,2015,43(08):110.
 Shu Zhaolin,et al.Control effect of Rhodotorula mucilaginosa on Penicillium italicum and Botrytis cinerea in postharvest pear fruits[J].Jiangsu Agricultural Sciences,2015,43(14):110.
[4]赵玉靖,滑帆,赵建军,等.耐抽薹大白菜-结球甘蓝单体异附加系后代的获得[J].江苏农业科学,2016,44(07):196.
 Zhao Yujing,et al.Obtaining of progeny of bolting tolerance Chinese cabbage-head cabbage addition line[J].Jiangsu Agricultural Sciences,2016,44(14):196.
[5]陈婷,韩士群,周庆.巢湖藻-草-泥有机肥的重金属安全性评价[J].江苏农业科学,2017,45(18):251.
 Chen Ting,et al.Heavy metal safety evaluation of Chaohu Lake algae-grass-mud organic manure[J].Jiangsu Agricultural Sciences,2017,45(14):251.
[6]綦洋,王柬钧,桑园园,等.大白菜YUCCA基因家族的鉴定与生物信息学分析[J].江苏农业科学,2019,47(03):49.
 Qi Yang,et al.Bioinformatics analysis of YUCCA gene family in Chinese cabbage (Brassica rapa ssp. pekinensis)[J].Jiangsu Agricultural Sciences,2019,47(14):49.
[7]陈丽潇,王跃华,刘鑫,等.抗根肿病大白菜小孢子培养及分子鉴定[J].江苏农业科学,2019,47(10):141.
 Chen Lixiao,et al.Microspore culture and molecular identification of Chinese cabbage with club root resistance[J].Jiangsu Agricultural Sciences,2019,47(14):141.
[8]庞文玉,王安,杨宝谊,等.大白菜ENT基因家族的鉴定与生物信息学分析[J].江苏农业科学,2019,47(12):52.
 Pang Wenyu,et al.Identification and bioinformatics analysis of ENT gene family in Chinese cabbage[J].Jiangsu Agricultural Sciences,2019,47(14):52.
[9]孙齐英,夏明.武汉蔬菜市场大白菜软腐病新病原菌鉴定[J].江苏农业科学,2020,48(15):141.
 Sun Qiying.Identification of new pathogen causing soft rot of Chinese cabbage in Wuhan vegetable market[J].Jiangsu Agricultural Sciences,2020,48(14):141.
[10]徐丽萍.塑料大棚栽培下有机无机配施对大白菜产量、品质及土壤肥力的影响[J].江苏农业科学,2021,49(6):109.
 Xu Liping.Influences of combined application of organic and inorganic fertilizers on yield and quality of Chinese cabbage and soil fertility under plastic greenhouse cultivation[J].Jiangsu Agricultural Sciences,2021,49(14):109.

备注/Memo

备注/Memo:
收稿日期:2018-03-12
基金项目:山东省自然科学基金(编号:ZR2012cq019)。
作者简介:陈晓峰(1979—),男,博士,助理研究员,主要从事植物分子生物学研究。E-mail:cxfeng1979@126.com。
更新日期/Last Update: 2019-07-20