|本期目录/Table of Contents|

[1]张旭然,杨世琼,王琳,等.设施黄瓜果期不同叶序叶片的气孔特性[J].江苏农业科学,2019,47(17):128-131,137.
 Zhang Xuran,et al.Stomatal characters of cucumber (Cucumis sativus L.) leaves with different phyllotaxis during fruiting period in greenhouse[J].Jiangsu Agricultural Sciences,2019,47(17):128-131,137.
点击复制

设施黄瓜果期不同叶序叶片的气孔特性(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第17期
页码:
128-131,137
栏目:
园艺与林学
出版日期:
2019-09-29

文章信息/Info

Title:
Stomatal characters of cucumber (Cucumis sativus L.) leaves with different phyllotaxis during fruiting period in greenhouse
作者:
张旭然1 杨世琼1 王琳1 杨再强12
1.南京信息工程大学气象灾害预报预警与评估协同创新中心,江苏南京 210044; 2.江苏省农业气象重点实验室,江苏南京 210044
Author(s):
Zhang Xuranet al
关键词:
叶龄气孔形态气孔开度气孔开张比气孔指数上下表皮
Keywords:
-
分类号:
S642.201
DOI:
-
文献标志码:
A
摘要:
为了研究黄瓜果期不同叶序对叶片气孔特征及其开度的影响,以黄瓜品种探索为试材进行模拟试验,利用数码显微成像系统和数码测距软件对叶片气孔长度、宽度、开度、开张比、气孔密度及气孔指数等气孔参数进行测量。结果表明:随着黄瓜植株叶序的增大,气孔长度、宽度、开度、开张比均有增大的趋势;叶片气孔密度则随叶序增大有减小趋势;与第3张叶片相比,叶序的增大对叶片气孔指数无显著影响。在同一叶序条件下,叶片上表皮的气孔长度、宽度、开度、气孔指数、开张比均高于下表皮,而下表皮的气孔密度则明显高于上表皮。本研究有效证明叶龄对气孔的形态、开度、开张比及其气孔密度有着显著的影响,为黄瓜生长模型的建立提供了科学依据。
Abstract:
-

参考文献/References:

[1]Buckley T N,Farquhar G D,Mott K A. Qualitative effects of patchy stomatal conductance distribution features on gas-exchange calculations[J]. Plant Cell & Environ,1997,20(7):867-880.
[2]Meyer M S,Green G C. Comparison of stomatal action of orange,soybean and wheat under field conditions[J]. Australian Journal of Plant Physiology,1981(8):65-76.
[3]王曙光,李中青,贾寿山,等. 小麦叶片气孔性状与产量和抗旱性的关系[J]. 应用生态学报,2013,24(6):1609-1614.
[4]Blanke M M,Cooke D T. Effects of flooding and drought on stomatal activity,transpiration,photosynthesis,water potential and water channel activity in strawberry stolons and leaves[J]. Plant Growth Regulation,2004,42(2):153-160.
[5]Ai X Z,Wang X F,Guo Y K,et al. Effects of suboptimal temperature and low temperature under low light intensity on stomatal characteristics and chloroplast ultrastructure of cucumber seedlings[J]. Scientia Agricultura Sinica,2006,27(1):82-91.
[6]Liang J S,Zhang J H,Wong M H. The relations of stomatal closure and reopening to xylem ABA concentration and leaf water potential during soil drying and rewatering[J]. Plant Growth Regulation,1999,29(1/2):77-86.
[7]Yang L M,Han M,Zhou G S,et al. The changes in water-use efficiency and stomatal density of Leymus chinensis along Northeast China Transect[J]. Acta Ecologica Sinica,2007,27(1):16-23.
[8]田鑫,于广文. 干旱胁迫对水稻叶片气孔密度的影响[J]. 辽宁农业科学,2010(2):26-28.
[9]Bunce J A. Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions[J]. Oecologia,2004,140(1):1-10.
[10]Tinoco O C,Pearcy R W. Stomatal dynamics and its importance to carbon gain in two rainforest piper species[J]. Oecologia,1993,94(3):395-402.
[11]Bush S E,Pataki D E,Hultine K R,et al. Wood anatomy constrains stomatal responses to atmospheric vapor pressure deficit in irrigated,urban trees[J]. Oecologia,2008,156(1):13-20.
[12]杨再强,张静,江晓东,等. 不同R ∶ ER值对菊花叶片气孔特征和气孔导度的影响[J]. 生态学报,2012,32(7):2135-2141.
[13]蔡志全,齐欣,曹坤芳. 7种热带雨林树苗叶片气孔特征及其可塑性对不同光照强度的响应[J]. 应用生态学报,2004,15(2):201-204.
[14]Lee S H,Tewari R K,Hahn E J,et al. Photon flux density and light quality induce changes in growth,stomatal development,photosynthesis and transpiration of Withania Somnifera L. Dunal plantlets[J]. Plant Cell,Tissue and Organ Culture,2007,90(2):141-151.
[15]敖红,王炎. 干旱胁迫下云杉内源激素的响应及其气孔调节[J]. 经济林研究,2011,29(3):28-34.
[16]尹秀玲,温静,刘欣,等. 蔷薇科12属代表植物叶片气孔密度研究[J]. 北方果树,2008(1):4-6.
[17]Zhang J,Zhang Q,Zhao J H,et al. The response of three crop drought indices to spring wheat water stress over semi-arid region in northwest China[J]. Acta Ecologica Sinica,2008,28(4):1646-1654.
[18]刘天宝. 不同叶序植物内源细胞分裂素和生长素的差异分析[D]. 合肥:安徽农业大学,2010.
[19]徐全乐,胡鑫. 植物叶序的发生和影响因素[J]. 植物生理学通讯,2009,45(4):405-412.
[20]申芳芳,张万里,李德志. 植物叶序研究的源流与发展[J]. 东北林业大学学报,2006,34(5):83-86.
[21]林日健. 旱季咖啡不同品种叶龄和叶位的气孔阻力[J]. 热带作物学报,1996,17(1):57-62.
[22]侯加林,王一鸣,丛晓燕,等. 番茄叶序发育动态模拟模型[J]. 农业机械学报,2006,37(7):101-103.
[23]段爱国. 华山松不同叶龄、部位针叶叶绿素荧光参数的动态变化规律[J]. 北京林业大学学报,2008,30(5):26-32.
[24]张永平,王志敏,吴永成,等. 不同供水条件下小麦不同绿色器官的气孔特性研究[J]. 作物学报,2006,32(1):70-75,160-162.
[25]Chen Q Q,Fan Y Y,Hao Y B,et al. Effects of different soil water content on stomata development and water consumption of maize[J]. Agricultural Research in the Arid Areas,2011,29(3):75-79.
[26]Doheny-Adams T,Hunt L,Franks P J,et al. Genetic manipulation of stomatal density influences stomatal size,plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient[J]. Philosophical Transactions of the Royal Society of London,2012,367(1588):547-555.
[27]Gillon L S,Dan Y. Internal conductance to CO2 diffusion and C18O2 discrimination in C3 leaves[J]. Plant Physiology,2000,123(1):201-213.
[28]Franks P J,Drake P L,Beering D J. Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density:an analysis using Eucalyptus globulus[J]. Plant,Cell and Environment,2009,32(12):1737-1748.
[29]Miyashita K,Tanakamaru S,Maitani T,et al. Recovery responses of photosynthesis,transpiration,and stomatal conductance in kidney bean following drought stress[J]. Environmental and Experimental Botany,2005,53(2):205-214.
[30]Tanaka Y,Sugano S S,Shimada T,et al. Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis[J]. The New Phytologist,2013,198(3):757-764.
[31]刘天宝. 不同叶序植物内源细胞分裂素和生长素的差异分析[D]. 合肥:安徽农业大学,2010.
[32]徐全乐,胡鑫. 植物叶序的发生和影响因素[J]. 植物生理学通讯,2009,45(4):405-412.
[33]赵清岩,任安祥. 黄瓜气孔开闭规律及其分布的研究[J]. 内蒙古农牧学院学报,1986,7(2):121-125.
[34]申芳芳,张万里,李德志. 植物叶序研究的源流与发展[J]. 东北林业大学学报,2006,34(5):83-86.
[35]徐坤,邹琦,赵燕. 土壤水分胁迫与遮荫对生姜生长特性的影响[J]. 应用生态学报,2003,14(10):1645-1648.
[36]刘悦秋,孙向阳,王勇,等. 遮荫对异株荨麻光合特性和荧光参数的影响[J]. 生态学报,2007,27(8):3457-3464.
[37]陈温福,徐正进,张龙步,等. 水稻叶片气孔密度与气体扩散阻力和净光合速率关系的比较研究[J]. 中国水稻科学,1990(4):163-168.
[38]孟雷,李磊鑫,陈温福,等. 水分胁迫对水稻叶片气孔密度、大小及净光合速率的影响[J]. 沈阳农业大学学报,1999(5):477-480.
[39]贺凤丽,马三梅. 气孔在菜心子叶表皮分布的研究[J]. 北方园艺,2009(10):26-29.

相似文献/References:

[1]贺安娜,伍贤进,李胜华,等.虎耳草春叶和秋叶光合特性及有效成分含量比较[J].江苏农业科学,2016,44(01):224.
 He Anna,et al.Comparison of photosynthetic characteristics and effective composition content between spring leaves and autumn leaves of Saxifraga stolonifera[J].Jiangsu Agricultural Sciences,2016,44(17):224.
[2]吴玲利,熊利,柯镔峰,等.白木通的光合特性[J].江苏农业科学,2015,43(08):250.
 Wu Lingli,et al.Preliminary study on photosynthetic characteristics of Akebia trifoliate var. australis[J].Jiangsu Agricultural Sciences,2015,43(17):250.
[3]王乐,牛媛,曹志强,等.棉花叶龄动态的模拟研究[J].江苏农业科学,2018,46(04):68.
 Wang Le,et al.Study on dynamic simulation of cotton leaf age[J].Jiangsu Agricultural Sciences,2018,46(17):68.

备注/Memo

备注/Memo:
收稿日期:2018-06-01
基金项目:国家自然科学基金面上项目(编号:41775104);国家科技支撑计划(编号:2014BAD10B07);江苏省研究生科研创新计划(编号:KYCX18_1028)。
作者简介:张旭然(1995—),女,江苏镇江人,硕士研究生,研究方向为应用气象。E-mail:1139093612@qq.com。
通信作者:杨再强,博士,教授,博士生导师,研究方向为设施环境调控。E-mail:yzq6751@163.com。
更新日期/Last Update: 2019-09-05