|本期目录/Table of Contents|

[1]张静静,周卫红,邹萌萌,等.灌浆期水稻叶片铜含量变化的高光谱遥感定量监测研究[J].江苏农业科学,2019,47(23):324-330.
 Zhang Jingjing,et al.Study on quantitative monitoring of copper content in rice leaves during grain filling stage by hyperspectral remote sensing[J].Jiangsu Agricultural Sciences,2019,47(23):324-330.
点击复制

灌浆期水稻叶片铜含量变化的高光谱遥感定量监测研究(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第23期
页码:
324-330
栏目:
资源与环境
出版日期:
2019-12-30

文章信息/Info

Title:
Study on quantitative monitoring of copper content in rice leaves during grain filling stage by hyperspectral remote sensing
作者:
张静静1 周卫红13 邹萌萌1 刘影1 陶春柳12 李建龙1
1.南京大学生命科学学院,江苏南京 210093; 2.苏州健雄职业技术学院,江苏苏州 215411;
3.江苏科技大学苏州理工学院,江苏张家港 215600
Author(s):
Zhang Jingjinget al
关键词:
灌浆期水稻叶片铜含量高光谱遥感监测数字农业敏感高光谱指数和波段水稻食用安全
Keywords:
-
分类号:
X835;S127
DOI:
-
文献标志码:
A
摘要:
为了利用高光谱遥感有效地监测农作物叶片中的重金属含量变化,在化学分析和农作物叶片对铜元素含量增加的敏感性基础上,利用光谱植被指数定量监测作物叶片铜元素含量变化,为大面积、快速、准确、无损地监测农田水稻叶片重金属含量变化提供技术支持。以张家港市为研究区域,实地采集水稻叶片样品21个。采用便携式高光谱地物波谱仪,获取灌浆期水稻植株叶片的光谱反射率并提取光谱指数,室内测定叶片重金属铜含量,并分析水稻叶片重金属铜含量与不同类型光谱指数的相关性。结果表明,高光谱数据对叶片铜含量变化的敏感性较好,其中,红边位置(REP)、绿波段归一化差异指数(GNDVI)、比值植被指数(RVI)、Vogelmann红边指数(VOGI)和地面叶绿素指数(MTCI)可分别作为估测叶片铜含量的敏感光谱指数,其乘幂和指数回归模型能够较好地反演水稻叶片铜含量;叶片铜含量的敏感光谱波段参数在原始光谱中主要集中于420~670 nm范围内,最小负相关系数的波长是646、647、648 nm;而一阶微分和二阶微分光谱中在蓝边、黄边、红边和近红外区域均有分布,最大正相关系数的波长分别是660、715 nm;水稻叶片铜含量估测的最佳模型是基于二阶微分敏感光谱参数构建的偏最小二乘回归模型,该模型预测的铜含量值与实测值的拟合度较好(R2=0.56)。研究结果证明可以利用高光谱生物遥感技术有效地监测农田水稻叶片中重金属含量的变化,判断作物中重金属浓度是否超标,为高光谱遥感立体、快速和大面积地监测农田作物铜含量的变化提供参考,也为评价水稻的食用安全提供科学方法。
Abstract:
-

参考文献/References:

[1]王友保,刘登义. Cu、As及其复合污染对小麦生理生态指标的影响[J]. 应用生态学报,2001,12(5):773-776.
[2]周卫红,张静静,邹萌萌,等. 土壤重金属有效态含量检测与监测现状、问题及展望[J]. 中国生态农业学报,2017,25(4):605-615.
[3]刘厚田,张维平,于亚平,等. 土壤中过量铜对水稻叶片光谱反射特性的影响[J]. 环境科学学报,1984,4(4):350-359.
[4]浦瑞良,宫鹏. 高光谱遥感及其应用[M]. 北京:高等教育出版社,2000.
[5]刘燕德,施宇,蔡丽君. 基于近红外漫反射光谱的丁香蓼叶片重金属铜含量快速检测研究[J]. 光谱学与光谱分析,2012,32(12):3220-3224.
[6]张玉森,姚霞,田永超,等. 应用近红外光谱预测水稻叶片氮含量[J]. 植物生态学报,2010,34(6):704-712.
[7]张浩,胡昊,陈义,等. 水稻叶片氮素及籽粒蛋白质含量的高光谱估测模型[J]. 核农学报,2012,26(1):135-140.
[8]潘如圭. 作物对大气源重金属的吸收和转移[J]. 农业环境科学学报,1984(6):10-12.
[9]周静,刘松华,许伟,等. 张家港河金港段表层沉积物中氮磷及重金属污染评价[J]. 环境与发展,2018,30(2):8-10.
[10]Kashiwagi T,Shindoh K,Hirotsu N,et al. Evidence for separate translocation pathways in determining cadmium accumulation in grain and aerial plant parts in rice[J]. BMC Plant Biology,2009,9:8.
[11]龚绍琦,王鑫,沈润平,等. 滨海盐土重金属含量高光谱遥感研究[J]. 遥感技术与应用,2010,25(2):169-177.
[12]刘秀英,王力,常庆瑞,等. 基于相关分析和偏最小二乘回归的黄绵土土壤全氮和碱解氮含量的高光谱预测[J]. 应用生态学报,2015,26(7):2107-2114.
[13]Kooistra L,Wehrens R,Leuven R S E W,et al. Possibilities of visible near infrared spectroscopy for the assessment of soil contamination in river floodplains[J]. Analytica Chimica Acta,2001,446(1):97-105.
[14]艾金泉,陈文惠,陈丽娟,等. 冠层水平互花米草叶片光合色素含量的高光谱遥感估算模型[J]. 生态学报,2015,35(4):1175-1186.
[15]Chang S H,Collins W E. Confirmation of the airborne biogeophysical mineral exploration technique using laboratory methods[J]. Economic Geology,1983,78(4):723-736.
[16]Daughtry C T,Walthall C L,Kim M S,et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance[J]. Remote Sensing of Environment,2000,74(2):229-239.
[17]Tucker C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment,1979,8(2):127-150.
[18]Schuerger A C,Capelle G A,Benedetto J D,et al. Comparison of two hyperspectral imaging and two laser-induced fluorescence instruments for the detection of zinc stress and chlorophyll concentration in bahia grass(Paspalum notatum Flugge.)[J]. Remote Sensing of Environment,2003,84(4):572-588.
[19]Merzlyak M N,Gitelson A,Chivkunova O B,et al. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening[J]. Physiologia Plantarum,1999,106(1):135-141.
[20]Gamon J A,Penuelas J,Field C B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency[J]. Remote Sensing of Environment,1992,41(1):35-44.
[21]Penuelas J,Frederic B,Filella I. Semi-empirical indices to assess carotenoids/chlorophyll-a ratio from leaf spectral reflectance[J]. Photosynthetica,1995,31(2):221-230.
[22]Gitelson A,Kaufman Y J,Stark R,et al. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sensing of Environment,2002,80(1):76-87.
[23]Vogelmann J E,Rock B N,Moss D M. Red edge spectral measurements from sugar maple leaves[J]. International Journal of Remote Sensing,1993,14(8):1563-1575.
[24]Dash J,Curran P J. Evaluation of the MERIS terrestrial chlorophyll index(MTCI)[J]. Advances in Space Research,2007,39(1):100-104.
[25]王泽港,骆剑峰,刘冲. 单一重金属污染对水稻叶片光合特性的影响[J]. 上海环境科学,2004,23(6):240-243.
[26]何彩莲,郑顺林,周少猛,等. 基于高光谱植被指数的马铃薯叶片叶绿素含量估测模型[J]. 华南农业大学学报,2016,37(5):45-49.
[27]任红艳,庄大方,潘剑君,等. 重金属污染水稻的冠层反射光谱特征研究[J]. 光谱学与光谱分析,2010,30(2):430-434.
[28]徐良骥,李青青,朱小美,等. 煤矸石充填复垦重构土壤重金属含量高光谱反演[J]. 光谱学与光谱分析,2017,37(12):3839-3844.
[29]Wu Y Z,Chen J,Wu X M,et al. Possibilities of reflectance spectroscopy for the assessment of contaminant elements in suburban soils[J]. Applied Geochemistry,2005,20(6):1051-1059.
[30]童庆禧,张兵,郑兰芬. 高光谱遥感——原理、技术与应用[M]. 北京:高等教育出版社,2006:364-370.
[31]朱凌红,周澎,王忠民,等. 高光谱数据与叶绿素含量及植被指数的相关性研究进展[J]. 内蒙古民族大学学报(自然科学版),2014,29(1):41-44.
[32]田静国,王树东,张立福,等. 应用高光谱植被指数反演冬小麦叶绿素含量的光谱指标敏感性研究[J]. 科学技术与工程,2016,16(15):1-8.
[33]宋鹏飞,张丹,倪才英,等. 灰化苔草叶片铜污染的高光谱响应研究[J]. 环境工程学报,2016,10(2):999-1004.
[34]张静静,周卫红,邹萌萌,等. 高光谱遥感监测大面积土壤重金属污染的研究现状、原理及展望[J]. 江苏农业科学,2018,46(12):9-13.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2018-10-14
基金项目:国家重点研发计划(编号:2018YFD0800201);江苏省高校哲学社会科学研究项目(编号:2016SJD630126)。
作者简介:张静静(1993—),女,山东菏泽人,硕士研究生,研究方向为农田土壤重金属污染监测与修复。E-mail:jjzhang2012@126.com。
通信作者:陶春柳,硕士,副教授,研究方向为物流管理、农业经济及生态安全,E-mail:taocl@126.com;李建龙,博士,教授,博士生导师,研究方向为
更新日期/Last Update: 2019-12-05