|本期目录/Table of Contents|

[1]卫纯洁,陶亚军,范方军,等.利用重测序染色体片段代换系群体定位水稻籽粒长宽比QTL[J].江苏农业科学,2020,48(06):36-40.
 Wei Chunjie,et al.Mapping of QTL for length-width ratio using whole-genome re-sequenced chromosome segment substitution lines in rice[J].Jiangsu Agricultural Sciences,2020,48(06):36-40.
点击复制

利用重测序染色体片段代换系群体
定位水稻籽粒长宽比QTL
(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第48卷
期数:
2020年第06期
页码:
36-40
栏目:
生物技术
出版日期:
2020-04-08

文章信息/Info

Title:
Mapping of QTL for length-width ratio using whole-genome re-sequenced chromosome segment substitution lines in rice
作者:
卫纯洁12 陶亚军13 范方军13 李文奇13 王芳权13 许扬13 陈智慧13 仲维功1 杨杰13 王军13
1.江苏省农业科学院粮食作物研究所/国家水稻改良中心南京分中心/江苏省优质水稻工程技术研究中心,江苏南京 210014;
2.扬州大学生物科学与技术学院,江苏扬州 225009; 3.扬州大学/江苏省粮食作物现代产业技术协同创新中心,江苏扬州 225009
Author(s):
Wei Chunjieet al
关键词:
水稻染色体片段代换系重测序籽粒长宽比QTL定位
Keywords:
-
分类号:
S511.01
DOI:
-
文献标志码:
A
摘要:
水稻籽粒长宽比是影响水稻品质和产量的重要农艺性状之一,是由多基因控制的数量性状。染色体片段代换系由于可以减少分离群体中个体间遗传背景的干扰,已成为定位和克隆复杂性状QTL的重要材料。本研究利用以籼稻品种9311为背景、以粳稻品种日本晴为代换片段构建的128个经过2代重测序的染色体片段代换系群体作为试验材料,利用多元回归,结合Bin-map图谱,定位到了4个控制水稻籽粒长宽比的QTL。其中,qLWR2.1被定位在第2染色体上的 812 145 bp 区间内,加性效应值为-0.04,加性效应百分率为-1.12%;qLWR2.2被定位在第2染色体上的324 166 bp区间内,加性效应值为0.17,加性效应百分率为4.14%;qLWR3.1被定位在第3染色体上的17 825 bp区间内,加性效应值为-0.25,加性效应百分率为-7.73%;qLWR11.1被定位在第11染色体上的945 168 bp区间内,加性效应值为0.21,加性效应百分率为5.15%。本研究结果为精细定位并克隆相应QTL,进而探明水稻籽粒长宽比QTL的分子调控机制奠定了基础。
Abstract:
-

参考文献/References:

[1]林鸿宣,闵绍楷,熊振民,等. 应用RFLP图谱定位分析籼稻粒形数量性状基因座位[J]. 中国农业科学,1995,28(4):1-7.
[2]邢永忠,谈移芳,徐才国,等. 利用水稻重组自交系群体定位谷粒外观性状的数量性状基因[J]. 植物学报,2001,43(8):840-845.
[3]张光恒,张国平,钱前,等. 不同环境条件下稻谷粒形数量性状的QTL分析[J]. 中国水稻科学,2004,18(1):16-22.
[4]黎毛毛,徐磊,任军芳,等. 粳稻粒形性状的数量性状基因座检测[J]. 中国农业科学,2009,42(7):2255-2261.
[5]Kesavan M,Song J T,Seo H S. Seed size:a priority trait in cereal crops[J]. Physiol Plantarum,2013,147(2):113-120.
[6]Lin N,Li Y H. Signaling pathways of seed size control in plants[J]. Curr Opin Plant Biol,2016,33:23-32.
[7]Tanabe S,Ashikari M,Fujioka S,et al. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant,dwarf11,with reduced seed length[J]. Plant Cell,2005,17(3):776-790.
[8]Zhou Y,Tao Y J,Zhu J Y,et al. GNS4,a novel allele of DWARF11,regulates grain number and grain size in a high-yield rice variety[J]. Rice,2017,10:34.
[9]Zhu X L,Liang W Q,Cui X,et al. Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of carbon starved anther,a MYB domain protein[J]. Plant J,2015,82(4):570-581.
[10]Hong Z,Ueguchi-Tanaka M,Umemura K,et al. A rice brassinosteroid-deficient mutant,ebisu dwarf (d2),is caused by a loss of function of a new member of cytochrome P450[J]. Plant Cell,2003,15(12):2900-2910.
[11]Yamamuro C,Ihara Y,Wu X,et al. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint[J]. Plant Cell,2000,12(9):1591-1606.
[12]Tao H,Lin L,Jin Y,et al. DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice[J]. Plant Cell,2012,24(6):2562-2577.
[13]Atsunori T,Hitoshi N,Chikako T,et al. BRASSINOSTEROID UPREGULATED1,encoding a helix-loop-helix protein,is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice[J]. Plant Physiol,2009,151(2):669-680.
[14]Bai M Y,Zhang L Y,Gampala S S,et al. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice[J]. Proc Natl Acad Sci USA,2007,104(34):13839-13844.
[15]Li D,Wang L,Wang M,et al. Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield[J]. Plant Biotech J,2010,7(8):791-806.
[16]Ishimaru K,Hirotsu N,Madoka Y,et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield[J]. Nature Genet,2013,45(6):707-711.
[17]Liu L,Tong H,Xiao Y,et al. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice[J]. Proc Natl Acad Sci USA,2015,112(35):11102-11107.
[18]Miura K,Agetsuma M,Kitano H,et al. A metastable DWARF1 epigenetic mutant affecting plant stature in rice[J]. Proc Natl Acad Sci USA,2009,106(27):11218-11223.
[19]Zhang D P,Zhou Y,Yin J F,et al. Rice G-protein subunits qPE9-1 and RGB1 play distinct roles in abscisic acid responses and drought adaptation[J]. J Exp Bot,2015,66(20):6371-6384.
[20]Utsunomiya Y,Samejima C,Takayanagi Y,et al. Suppression of the rice heterotrimeric G protein beta-subunit gene,RGB1,causes dwarfism and browning of internodes and lamina joint regions[J]. Plant J,2011,67(5):907-916.
[21]Fan C,XingY,Mao H,et al. GS3,a major QTL for grain length and weight and minor QTL for grain width and thickness in rice,encodes a putative transmembrane protein[J]. Theor Appl Genet,2006,112(6):1164-1171.
[22]Mao H,Sun S,Yao J,et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. Proc Natl Acad Sci USA,2010,107(45):19579-19584.
[23]Liu Q,Han R X,Wu K,et al. G-protein beta gamma subunits determine grain size through interaction with MADS-domain transcription factors in rice[J]. Nat Commun,2018,9:852.
[24]Xu R,Duan P,Yu H,et al. Control of grain size and weight by the OsMKKK10-OsMKK4-OsMAPK6 signaling pathway in rice[J]. Mol Plant,2018,11:860-873.
[25]Xu R,Yu H,Wang J,et al. A Mitogen-activated protein kinase phosphatase influences grain size and weight in rice[J]. Plant J,2018,95:937-946.
[26]Xu J,Zhao Q,Du P,et al. Developing high throughput genotyped chromosome segment substitution lines based on population whole-genome resequencing in rice (Oryza sativa L.)[J]. BMC Genomics,2010,11:656-669.
[27]Huang X,Feng Q,Qian Q,et al. High-throughput genotyping by whole-genome resequencing[J]. Genome Res,2009,19(6):1068-1076.
[28]Paran I,Zamirc D. Quantitative traits in plants:beyond the QTL[J]. Trends Genet,2003,19(6):303-306.
[29]Eshed Y,Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL[J]. Genetics,1995,141(3):1147-1162.
[30]McCouch S R. Gene nomenclature system for rice[J]. Rice,2008,1(1):72-84.
[31]徐正进,陈温福,马殿荣,等. 稻谷粒形与稻米主要品质性状的关系[J]. 作物学报,2004,30(9):49-55.
[32]杨联松,白一松,许传万,等. 水稻粒形与稻米品质间相关性研究进展[J]. 安徽农业科学,2001,29(3):312-316.
[33]严长杰,梁国华,陈峰,等. 利用籼粳回交群体分析水稻粒形性状相关QTLs[J]. 遗传学报,2003,30(8):711-716.
[34]张光恒,张国平,钱前,等. 不同环境条件下稻谷粒形数量性状的QTL分析[J]. 中国水稻科学,2004,18(1):16-22.
[35]陈冰嬬,石英尧,崔金腾,等. 利用BC2F2高代回交群体定位水稻籽粒大小和形状QTL[J]. 作物学报,2008,34(8):1299-1307.
[36]万向元,刘世家,王春明,等. 利用CSSLs群体研究稻米粒型QTL的表达稳定性[J]. 遗传学报,2004,31(11):1275-1283.
[37]李生强,崔国昆,关成冉,等. 基于水稻单片段代换系的粒形QTL定位[J]. 中国水稻科学,2011,25(2):163-168.
[38]Bai X F,Luo L J,Yan W H,et al. Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7[J]. BMC Genetics,2010,11:16-26.
[39]马孟莉,刘艳红,江玲,等. 利用F2群体定位水稻谷粒长宽比QTL[J]. 江西农业大学学报,2015(2):260-263.
[40]Tan Y F,Xing Y Z,Li J X,et al. Genetic bases of appearance quality of rice grains in Shanyou 63,an elite rice hybrid[J]. Theor Appl Genet,2000,101(6):823-829.
[41]李泽福,万建民,夏加发,等. 水稻外观品质的数量性状基因位点分析[J]. 遗传学报,2003,30(3):251-259.

相似文献/References:

[1]马旭俊,刘春娟,吕世博,等.绿色荧光蛋白基因在水稻遗传转化中的应用[J].江苏农业科学,2013,41(04):35.
[2]李岳峰,居立海,张来运,等.水分胁迫下丛枝菌根对水稻/绿豆间作系统 作物生长和氮磷吸收的影响[J].江苏农业科学,2013,41(04):58.
[3]崔月峰,孙国才,王桂艳,等.不同施氮水平和前氮后移措施对水稻产量 及氮素利用率的影响[J].江苏农业科学,2013,41(04):66.
[4]张其蓉,宋发菊,田进山,等.长江中下游稻区水稻区域试验品种抗稻瘟病鉴定与评价[J].江苏农业科学,2013,41(04):92.
[5]王麒,张小明,卞景阳,等.不同插秧密度对黑龙江省第二积温带水稻产量及产量构成的影响[J].江苏农业科学,2013,41(05):60.
 Wang Qi,et al.Effect of different transplanting density on yield and yield component of rice in second temperature zone of Heilongjiang Province[J].Jiangsu Agricultural Sciences,2013,41(06):60.
[6]张国良,张森林,丁秀文,等.基质厚度和含水量对水稻育秧的影响[J].江苏农业科学,2013,41(05):62.
 Zhang Guoliang,et al.Effects of substrate thickness and water content on growth of rice seedlings[J].Jiangsu Agricultural Sciences,2013,41(06):62.
[7]赵忠宝,朱清海.稻-蟹-鳅生态系统的能值分析[J].江苏农业科学,2013,41(05):349.
 Zhao Zhongbao,et al.Emergy analysis of paddy-crab-loach ecosystem[J].Jiangsu Agricultural Sciences,2013,41(06):349.
[8]杨红福,姚克兵,束兆林,等.甲氧基丙烯酸酯类杀菌剂对水稻恶苗病的田间药效[J].江苏农业科学,2014,42(12):166.
 Yang Hongfu,et al.Field efficacy of strobilurin fungicides against rice bakanae disease[J].Jiangsu Agricultural Sciences,2014,42(06):166.
[9]唐成,陈露,安敏敏,等.稻瘟病诱导水稻幼苗叶片氧化还原系统的特征谱变化[J].江苏农业科学,2014,42(12):141.
 Tang Cheng,et al.Characteristic spectral changes of redox homeostasis system in rice seedling leaves induced by rice blast[J].Jiangsu Agricultural Sciences,2014,42(06):141.
[10]万云龙.优质水稻—春甘蓝轮作高效栽培模式[J].江苏农业科学,2014,42(12):90.
 Wan Yunlong.Efficient cultivation mode of high quality rice-spring cabbage rotation[J].Jiangsu Agricultural Sciences,2014,42(06):90.
[11]张宏根,许作鹏,裴艳,等.利用染色体片段代换系定位水稻HL型育性恢复基因[J].江苏农业科学,2015,43(09):64.
 Zhang Honggen,et al.Mapping of fertility restoration genes for HL type cytoplasmic male sterility using chromosome segment substation lines in rice[J].Jiangsu Agricultural Sciences,2015,43(06):64.
[12]张昌泉,陈飞,洪燃,等.利用染色体片段代换系定位水稻抽穗开花期耐热性QTL[J].江苏农业科学,2016,44(12):120.
 Zhang Changquan,et al.Identification of QTLs for heat tolerance at flowering stage in rice using chromosome segment substitution lines[J].Jiangsu Agricultural Sciences,2016,44(06):120.

备注/Memo

备注/Memo:
收稿日期:2019-02-13
基金项目:国家重点研发计划(编号:2017YFD0100400-3);江苏省农业科学院探索性项目[编号:ZX(17)2014];江苏省重点研发计划(编号:BE2017368)。
作者简介:卫纯洁(1996—),女,上海人,主要从事水稻分子生物学研究。E-mail:wcj4435@outlook.com。
通信作者:王军,博士,副研究员,主要从事水稻分子遗传及育种研究。E-mail:wangjunjaas@aliyun.com。
更新日期/Last Update: 2020-03-20