|本期目录/Table of Contents|

[1]关健飞,曹阳.高通量测序分析黑土稀有微生物群落结构[J].江苏农业科学,2020,48(20):288-292.
 Guan Jianfei,et al.High-throughput sequencing analysis of rare microbial community structure in black soil[J].Jiangsu Agricultural Sciences,2020,48(20):288-292.
点击复制

高通量测序分析黑土稀有微生物群落结构(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第48卷
期数:
2020年第20期
页码:
288-292
栏目:
资源与环境
出版日期:
2020-10-20

文章信息/Info

Title:
High-throughput sequencing analysis of rare microbial community structure in black soil
作者:
关健飞曹阳
牡丹江师范学院,黑龙江牡丹江 15700
Author(s):
Guan Jianfeiet al
关键词:
稀有微生物群落结构高通量测序黑土理化性质
Keywords:
-
分类号:
S154.3
DOI:
-
文献标志码:
A
摘要:
稀有微生物群落作为地球生态系统中的重要组成部分,在土壤生态系统中扮演着超比例的角色。以黑龙江省黑土中稀有微生物为研究对象,采用高通量测序技术分析黑土中稀有细菌、真菌群落结构组成及其与土壤理化性质的相关性。对属水平上稀有微生物群落进行分析发现,相对丰度在0.01%以下的稀有细菌菌属420种,稀有真菌菌属210种,各采样点处稀有微生物类群分布差异性较大,存在特征稀有微生物类群,但未见黑土共有稀有菌属的检出。总磷和有效磷的含量分别影响不同种类的稀有细菌菌属,其中放线孢菌属(Actinomycetospora)与总磷含量呈现极显著正相关关系,无色杆菌属(Achromobacter)与有效磷含量呈现极显著正相关关系。真菌稀有菌群中的小孢霉属(Microbotryum)、顶孢霉属(Acremonium)等与土壤含水率、有机质含量、总氮含量、硝态氮含量呈现极显著正相关关系。
Abstract:
-

参考文献/References:

[1]Falkowski P G,Fenchel T,Delong E F. The microbial engines that drive earth’s biogeochemical cycles[J]. Science,2008,320(5879):1034-1039.
[2]Nemergut D R,Costello E K,Hamady M,et al. Global patterns in the biogeography of bacterial taxa[J]. Environmental Microbiology,2011,13(1):135-144.
[3]Chen Q L,Ding J,Dong Z,et al. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils[J]. Soil Biology and Biochemistry,2020,141:107686.
[4]Jousset A,Bienhold C,Chatzinotas A,et al. Where less may be more:how the rare biosphere pulls ecosystems strings[J]. ISME Journal,2017,11(4):853-862.
[5]Zhang Y,Dong S K,Gao Q Z,et al. “Rare biosphere” plays important roles in regulating soil available nitrogen and plant biomass in alpine grassland ecosystems under climate changes[J]. Agriculture Ecosystems & Environment,2019,279:187-193.
[6]Philippot L,Spor A,Hénault C,et al. Loss in microbial diversity affects nitrogen cycling in soil[J]. The ISME Journal,2013,7(8):1609-1619.
[7]Jiao C C,Zhao D Y,Huang R,et al. Abundant and rare bacterioplankton in freshwater lakes subjected to different levels of tourism disturbances[J]. Water,2018,10(8):1075.
[8]Wang Y Q,Hatt J K,Tsementzi D,et al. Quantifying the importance of the rare biosphere for microbial community response to organic pollutants in a freshwater ecosystem[J]. Applied and Environmental Microbiology,2017,83(8):e03321-16.
[9]Wei S T S,Wu Y W,Lee T H,et al. Microbial functional responses to cholesterol catabolism in denitrifying sludge[J]. mSystems,2018,3(5):e00113-e00118.
[10]Giebler J,Wick L Y,Chatzinotas A,et al. Alkane-degrading bacteria at the soil-litter interface:comparing isolates with T-RFLP-based community profiles[J]. FEMS Microbiology Ecology,2013,86(1):45-58.
[11]Vivant A L,Garmyn D,Maron P A,et al. Microbial diversity and structure are drivers of the biological barrier effect against Listeria monocytogenes in soil[J]. PLoS One,2013,8(10):e76991.
[12]Lynch M D J,Neufeld J D. Ecology and exploration of the rare biosphere[J]. Nature Reviews Microbiology,2015,13(4):217-229.
[13]Galand P E,Casamayor E O,Kirchman D L,et al. Ecology of the rare microbial biosphere of the Arctic Ocean[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(52):22427-22432.
[14]Musat N,Halm H,Winterholler B,et al. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(46):17861-17866.
[15]Liu M,Xue Y Y,Yang J. Rare plankton subcommunities are far more affected by DNA extraction kits than abundant plankton[J]. Frontiers in Microbiology,2019,10:454.
[16]Hu B Y,Xu B X,Yun J L,et al. High-throughput single-cell cultivation reveals the underexplored rare biosphere in deep-sea sediments along the Southwest Indian Ridge[J]. Lab on a Chip,2020,20:363-372.
[17]Hamasaki K,Taniguchi A,Tada Y,et al. Active populations of rare microbes in oceanic environments as revealed by bromodeoxyuridine incorporation and 454 tag sequencing[J]. Gene,2016,576(2):650-656.
[18]Podar M,Abulencia C B,Walcher M,et al. Targeted access to the genomes of low-abundance organisms in complex microbial communities[J]. Applied and Environmental Microbiology,2007,73(10):3205-3214.
[19]Zhou Q,Zhang X M,He R J,et al. The composition and assembly of bacterial communities across the rhizosphere and phyllosphere compartments of Phragmites australis[J]. Diversity,2019,11(6):98.
[20]Ai D X C,Chu C J,Ellwood M D F,et al. Migration and niche partitioning simultaneously increase species richness and rarity[J]. Ecological Modelling,2013,258:33-39.
[21]Gaston K J. Biodiversity and extinction:the importance of being common[J]. Progress in Physical Geography,2008,32(1):73-79.
[22]Rodrigues J L,Pellizari V H,Mueller R,et al. Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(3):988-993.
[23]Chambers L G,Guevara R,Boyer J N,et al. Effects of salinity and inundation on microbial community structure and function in a mangrove peat soil[J]. Wetlands,2016,36:361-371.
[24]Roesch L F W,Fulthorpe R R,Riva A,et al. Pyrosequencing enumerates and contrasts soil microbial diversity[J]. ISME Journal,2007,1(4):283-290.

相似文献/References:

[1]陈航,陈浒,王鹏举,等.朝营小流域石漠化治理区土壤动物群落结构[J].江苏农业科学,2016,44(03):312.
 Chen Hang,et al.Soil animal community structure in rocky desertification control area of Chaoying small watershed[J].Jiangsu Agricultural Sciences,2016,44(20):312.
[2]刘宇,董蓉,王晓立,等.不同群落结构绿地空气负离子浓度与颗粒物的关系[J].江苏农业科学,2015,43(11):465.
 Liu Yu,et al.Relationship between air anion concentration and particular matter in green space of different community structures[J].Jiangsu Agricultural Sciences,2015,43(20):465.
[3]邓平,曾可为,喻运珍,等.加州鲈发塘池浮游生物的群落结构及动态[J].江苏农业科学,2015,43(06):333.
 Deng Ping,et al.Community structure and dynamics of plankton in largemouth bass Micropterus salmoides larviculture pond[J].Jiangsu Agricultural Sciences,2015,43(20):333.
[4]陈应武,夏彦飞.黄土高原草田轮作对土壤动物群落结构和多样性的影响[J].江苏农业科学,2014,42(12):353.
 Chen Yingwu,et al.Effects of Loess Plateau grassland crop rotation on community structure and diversity of soil animals[J].Jiangsu Agricultural Sciences,2014,42(20):353.
[5]田路路,隽英华,孙文涛.冻融作用对土壤微生物的影响综述[J].江苏农业科学,2016,44(10):438.
 Tian Lulu,et al.Effect of freezing and thawing action on soil microorganisms:a review[J].Jiangsu Agricultural Sciences,2016,44(20):438.
[6]魏家星,姜卫兵,荐晓峰.南京市林阴道植物的群落结构及文脉特色[J].江苏农业科学,2016,44(12):235.
 Wei Jiaxing,et al.Community structure and contextual peculiarity of main avenue in Nanjing City[J].Jiangsu Agricultural Sciences,2016,44(20):235.
[7]陈志德,管晓志,秦胜楠,等.江苏泰兴地区花生田昆虫类群及群落结构分析[J].江苏农业科学,2017,45(22):117.
 Chen Zhide,et al.Analysis of insect species and community structure in peanut field of Taixing, Jiangsu Province[J].Jiangsu Agricultural Sciences,2017,45(20):117.
[8]唐晟凯,张彤晴,李大命,等.骆马湖夏季鱼类群落结构及其空间分布[J].江苏农业科学,2018,46(1):107.
 Tang Shenghai,et al.Fish community structure and its spatial variation in Luoma Lake in summer[J].Jiangsu Agricultural Sciences,2018,46(20):107.
[9]史晓凯,马茹茹,颜道浩,等.外源砷胁迫对土壤细菌群落结构的影响[J].江苏农业科学,2018,46(14):242.
 Shi Xiaokai,et al.Effect of exogenous arsenic stress on soil bacterial community structure[J].Jiangsu Agricultural Sciences,2018,46(20):242.
[10]宛丽娟,朱永恒,谢鑫.铜陵市横冲流域杉木林下土壤动物群落与土壤理化性质的关系[J].江苏农业科学,2018,46(14):299.
 Wan Lijuan,et al.Relationship between soil animal community and soil physical-chemical properties under Chinese fir plantation in Hengchong watershed of Tongling City[J].Jiangsu Agricultural Sciences,2018,46(20):299.

备注/Memo

备注/Memo:
收稿日期:2020-04-19
基金项目:牡丹江师范学院博士科研启动基金(编号:MNUB201709)。
作者简介:关健飞(1986—),女,黑龙江齐齐哈尔人,博士,讲师,主要从事环境生态效应与资源利用研究。E-mail:bangeshiji@126.com。
更新日期/Last Update: 2020-11-09