|本期目录/Table of Contents|

[1]宋永嘉,刘宾,魏暄云,等.大数据时代无线传感技术在精准农业中的应用进展[J].江苏农业科学,2021,49(8):31-37.
 Song Yongjia,et al.Application progress of wireless sensor technology in precision agriculture in era of big data[J].Jiangsu Agricultural Sciences,2021,49(8):31-37.
点击复制

大数据时代无线传感技术在精准农业中的应用进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第49卷
期数:
2021年第8期
页码:
31-37
栏目:
专论与综述
出版日期:
2021-04-20

文章信息/Info

Title:
Application progress of wireless sensor technology in precision agriculture in era of big data
作者:
宋永嘉1刘宾1魏暄云1巴超2衡家然3
1.华北水利水电大学水利学院,河南郑州 450046; 2.河南华北水利水电勘察设计有限公司,河南郑州 450045;3.河南省岩石矿物测试中心,河南郑州 450012
Author(s):
Song Yongjiaet al
关键词:
精准农业无线传感技术大数据物联网
Keywords:
-
分类号:
S126
DOI:
-
文献标志码:
A
摘要:
精准农业是21世纪农业现代化的重要标志,对于推动我国农业发展与农村建设具有重要战略价值。近年来,随着大数据的全球风靡与不断创新,结合大数据技术的无线传感网络展现出广阔的应用前景,首先就大数据基本内涵、研究进展与行业发展趋势进行了分析,论述精准农业的概念、技术体系及其实施流程;随后总结并概括无线传感技术框架的物理组件、节点类型和技术特征,重点评述无线传感技术在精准农业领域的研究概况;最后系统分析了大数据时代下无线传感技术在精准农业方面的应用案例,并对未来行业发展趋势进行简要展望。本研究立足于大数据背景下,对于提升、丰富我国精准农业相关数据获取的技术方法具有一定参考价值。
Abstract:
-

参考文献/References:

[1]李朋来. 向农业4.0时代迈进中的我国精准农业发展制度供给研究[J]. 科学管理研究,2020,38(1):119-124.
[2]Fei H T. Rural development in China:Prospect and retrospect[M]. Chicago:University of Chicago Press,1989.
[3]Zhu L,Jiang Z Y. From brigade to village community:the land tenure system and rural development in China[J]. Cambridge Journal of Economics,1993,17(4):441-461.
[4]张富刚,刘彦随. 中国区域农村发展动力机制及其发展模式[J]. 地理学报,2008,63(2):115-122.
[5]Zhang N Q,Wang M H,Wang N. Precision agriculture—A worldwide overview[J]. Computers and Electronics in Agriculture,2002,36(2/3):113-132.
[6]Lamb D W,Brown R B. PA-precision agriculture:remote-sensing and mapping of weeds in crops[J]. Journal of Agricultural Engineering Research,2001,78(2):117-125.
[7]邓仲华,李志芳. 科学研究范式的演化——大数据时代的科学研究第四范式[J]. 情报资料工作,2013(4):19-23.
[8]Science. Dealing with data[EB/OL]. (2011-02-11)[2020-09-01]. https://science.sciencemag.org/content/331/6018.
[9]ERCIM News. Big data[EB/OL]. (2012-04-01)[2020-09-01]. https://ercim-news.ercim.eu/images/stories/EN89/EN89-web.pdf.
[10]Shih H M,Xue J Y. Big data development in China[J]. East Asian Policy,2018,10(4):91-102.
[11]杨晓北. 中美精准农业发展评价及路径选择[J]. 世界农业,2018(9):143-149.
[12]蒙继华,吴炳方,杜鑫,等. 遥感在精准农业中的应用进展及展望[J]. 国土资源遥感,2011(3):1-7.
[13]Pierce F J,Nowak P. Aspects of precision agriculture[J]. Advances in Agronomy,1999,67:1-85.
[14]赵春江,薛绪掌,王秀,等. 精准农业技术体系的研究进展与展望[J]. 农业工程学报,2003,19(4):7-12.
[15]Tian H K,Wang T H,Liu Y D,et al. Computer vision technology in agricultural automation—A review[J]. Information Processing in Agriculture,2020,7(1):1-19.
[16]Han S,Hummel J W,Goering C E,et al. Cell size selection for site-specific crop management[J]. Transactions of the ASAE,1994,37(1):19-26.
[17]Garcia F J M. Analysis of the spatio-temporal distribution of Helicoverpa armigera Hb. in a tomato field using a stochastic approach[J]. Biosystems Engineering,2006,93(3):253-259.
[18]Liu G S,Jiang H L,Liu S D,et al. Comparison of kriging interpolation precision with different soil sampling intervals for precision agriculture[J]. Soil Science,2010,175(8):405-415.
[19]Córdoba M A,Bruno C I,Costa J L,et al. Protocol for multivariate homogeneous zone delineation in precision agriculture[J]. Biosystems Engineering,2016,143:95-107.
[20]Rovira-Más F,Zhang Q,Reid J F. Stereo vision three-dimensional terrain maps for precision agriculture[J]. Computers and Electronics in Agriculture,2008,60(2):133-143.
[21]Friedli M,Kirchgessner N,Grieder C,et al. Terrestrial 3D laser scanning to track the increase in canopy height of both monocot and dicot crop species under field conditions[J]. Plant Methods,2016,12(1):1-15.
[22]Yang X T,Li M,Zhao C J,et al. Early warning model for cucumber downy mildew in unheated greenhouses[J]. New Zealand Journal of Agricultural Research,2007,50(5):1261-1268.
[23]Babatunde O,Armstrong L,Leng J,et al. Comparative analysis of genetic algorithm and particle swam optimization:an application in precision agriculture[J]. Asian Journal of Computer and Information Systems,2015,3(1):1-12.
[24]Mohapatra A G,Lenka S K. Neural network pattern classification and weather dependent fuzzy logic model for irrigation control in WSN based precision agriculture[J]. Procedia Computer Science,2016,78:499-506.
[25]Papageorgiou E I,Markinos A T,Gemtos T A. Fuzzy cognitive map based approach for predicting yield in cotton crop production as a basis for decision support system in precision agriculture application[J]. Applied Soft Computing,2011,11(4):3643-3657.
[26]Fisher D K,Norvell J,Sonka S,et al. Understanding technology adoption through system dynamics modeling:implications for agribusiness management[J]. International Food and Agribusiness Management Review,2000,3(3):281-296.
[27]Patrício D I,Rieder R. Computer vision and artificial intelligence in precision agriculture for grain crops:a systematic review[J]. Computers and Electronics in Agriculture,2018,153:69-81.
[28]Thomasson J A,Sui R,Cox M S,et al. Soil reflectance sensing for determining soil properties in precision agriculture[J]. Transactions of the ASAE,2001,44(6):1445-1453.
[29]Cassman K G. Ecological intensification of cereal production systems:yield potential,soil quality,and precision agriculture[J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96(11):5952-5959.
[30]Cook S E,Bramley R V. Precision agriculture-opportunities,benefits and pitfalls of site-specific crop management in Australia[J]. Australian Journal of Experimental Agriculture,1998,38(7):753-763.
[31]Lee W S,Ehsani R. Sensing systems for precision agriculture in Florida[J]. Computers and Electronics in Agriculture,2015,112:2-9.
[32]Feng X,Yan F,Liu X Y. Study of wireless communication technologies on Internet of things for precision agriculture[J]. Wireless Personal Communications,2019,108(3):1785-1802.
[33]Mekonnen Y,Namuduri S,Burton L,et al. Review-machine learning techniques in wireless sensor network based precision agriculture[J]. Journal of the Electrochemical Society,2020,167(3):037522.
[34]Bayrakdar M E. A smart insect pest detection technique with qualified underground wireless sensor nodes for precision agriculture[J]. IEEE Sensors Journal,2019,19(22):10892-10897.
[35]蔡述庭. 无线电传感器网络中能源高效的视频信号压缩关键技术研究[D]. 广州:广东工业大学,2011.
[36]马祖长,孙怡宁,梅涛. 无线传感器网络综述[J]. 通信学报,2004,4(4):114-124.
[37]刘卉,汪懋华,王跃宣,等. 基于无线传感器网络的农田土壤温湿度监测系统的设计与开发[J]. 吉林大学学报(工学版),2008,38(3):604-608.
[38]蔡义华,刘刚,李莉,等. 基于无线传感器网络的农田信息采集节点设计与试验[J]. 农业工程学报,2009,25(4):176-178.
[39]李震,Wang N,洪添胜,等. 农田土壤含水率监测的无线传感器网络系统设计[J]. 农业工程学报,2010,26(2):212-217.
[40]夏朝俊,顾春新,李彬. 精准农业无线传感器网络的研究与实现[J]. 机电工程,2015,32(3):439-442.
[41]高峰,俞立,张文安,等. 基于无线传感器网络的作物水分状况监测系统研究与设计[J]. 农业工程学报,2009,25(2):107-112.
[42]Kim Y,Evans R G,Iversen W M. Remote sensing and control of an irrigation system using a distributed wireless sensor network[J]. IEEE transactions on instrumentation and measurement,2008,57(7):1379-1387.
[43]Harun A N,Kassim M R M,Mat I,et al. Precision irrigation using wireless sensor network[C]. Kuala Lumpur:International Conference on Smart Sensors and Application (ICSSA),2015.
[44]Sadiq M T,Hossain M M,Rahman K F,et al. Automated irrigation system:controlling irrigation through wireless sensor network[J]. International Journal of Electronics and Electrical Engineering,2019,7(2):33-37.
[45]高军,丰光银,黄彩梅. 基于无线传感器网络的节水灌溉控制系统[J]. 现代电子技术,2010,33(1):204-206.
[46]闻珍霞,何龙,杨海清,等. 发展自动控制精准滴灌技术加快节约型农业建设[J]. 农业装备技术,2010,36(3):22-24.
[47]韩团军,尹继武,赵增群,等. 基于LoRa的远程分布式农业环境监测系统的设计[J]. 江苏农业科学,2019,47(19):236-240.
[48]Abd El-Kader S M,El-Basioni B M M. Precision farming solution in Egypt using the wireless sensor network technology[J]. Egyptian Informatics Journal,2013,14(3):221-233.
[49]Srbinovska M,Gavrovski C,Dimcev V,et al. Environmental parameters monitoring in precision agriculture using wireless sensor networks[J]. Journal of Cleaner Production,2015,88:297-307.
[50]Zervopoulos A,Tsipis A,Alvanou A G,et al. Wireless sensor network synchronization for precision agriculture applications[J]. Agriculture,2020,10(3):89.
[51]杨玮,吕科,张栋,等. 基于ZigBee技术的温室无线智能控制终端开发[J]. 农业工程学报,2010,26(3):198-202.
[52]Bencini L,Chiti F,Collodi G,et al. Agricultural monitoring based on wireless sensor network technology:real long life deployments for physiology and pathogens control[C]. Athens:2009 Third International Conference on Sensor Technologies and Applications,2009.
[53]Jiang J A,Wang C H,Liao M S,et al. A wireless sensor network-based monitoring system with dynamic convergecast tree algorithm for precision cultivation management in orchid greenhouses[J]. Precision Agriculture,2016,17(6):766-785.
[54]Zhao Y C,Gao S H,Zhu J,et al. Multifunctional stretchable sensors for continuous monitoring of long-term leaf physiology and microclimate[J]. ACS Omega,2019,4(5):9522-9530.

相似文献/References:

[1]丁克奎,钟凯文.基于“3S”的精准农业管理系统设计与实现[J].江苏农业科学,2015,43(01):399.
 Ding Kekui,et al.Design and implementation of precision agriculture management system based on 3S[J].Jiangsu Agricultural Sciences,2015,43(8):399.
[2]李辉,周忠凯,陶建平,等.基于物联网的温室大棚多点光照度采集与管理系统[J].江苏农业科学,2016,44(11):388.
 Li Hui,et al.Multi-spot illumination collection and management system based on internet of things[J].Jiangsu Agricultural Sciences,2016,44(8):388.
[3]张一洲,汪国莲,罗德旭.基于物联网的淮安红椒产业向精准农业转变研究[J].江苏农业科学,2017,45(10):305.
 Zhang Yizhou,et al.Study on red pepper industry transform into accurate agriculture based on internet of things[J].Jiangsu Agricultural Sciences,2017,45(8):305.
[4]文怀兴,王春普,黄正祥.基于机器视觉的温室大枣表型特征测量[J].江苏农业科学,2018,46(06):182.
 Wen Huaixing,et al.Measurement of phenotypic characteristics of jujube in greenhouse based on machine vision[J].Jiangsu Agricultural Sciences,2018,46(8):182.
[5]蒋秀莲,宋祎宁.改革视角下物联网在精准农业中的应用研究[J].江苏农业科学,2018,46(06):342.
 Jiang Xiulian,et al.Study on application of internet of things in precision agriculture under reform perspective[J].Jiangsu Agricultural Sciences,2018,46(8):342.
[6]高志政,彭孝东,林耿纯,等.无人机撒播技术在农业中的应用综述[J].江苏农业科学,2019,47(06):24.
 Gao Zhizheng,et al.Application of broadcast sowing by unmaned aerial vehicle in agriculture: a review[J].Jiangsu Agricultural Sciences,2019,47(8):24.
[7]亚森江·喀哈尔,尼加提·卡斯木,茹克亚·萨吾提,等.基于高光谱的春小麦抽穗期叶绿素含量估算方法[J].江苏农业科学,2019,47(18):266.
 Yasenjiang·Kahaer,et al.Estimation method of chlorphyll content at heading stage of spring wheat based on hyperspectral data[J].Jiangsu Agricultural Sciences,2019,47(8):266.
[8]冉军辉,吴崇友.传感器在谷物联合收获机中的应用进展及发展方向[J].江苏农业科学,2019,47(22):23.
 Ran Junhui,et al.Application progress and development trend of sensor in grain combine harvester[J].Jiangsu Agricultural Sciences,2019,47(8):23.
[9]陈旭君,王承祥,孙福,等.基于改进Faster R-CNN的田间植株幼苗检测方法[J].江苏农业科学,2021,49(4):159.
 Chen Xujun,et al.Detection method for plant seedlings in fields based on improved Faster R-CNN[J].Jiangsu Agricultural Sciences,2021,49(8):159.
[10]王圆圆,林建,王姗.基于YOLOv4-tiny模型的水稻早期病害识别方法[J].江苏农业科学,2023,51(16):147.
 Wang Yuanyuan,et al.An early rice disease recognition method based on YOLOv4-tiny model[J].Jiangsu Agricultural Sciences,2023,51(8):147.

备注/Memo

备注/Memo:
收稿日期:2020-10-09
基金项目:河南省高校科技创新团队支持计划(编号:19IRTSTHN030)。
作者简介:宋永嘉(1968—),女,河北冀州人,教授,主要从事水利工程、水力学及河流动力学研究。E-mail:songyongjia@ncwu.edu.cn。
通信作者:刘宾,硕士研究生,主要从事水利工程研究。E-mail:liubindwy@163.com。
更新日期/Last Update: 2021-04-20