|本期目录/Table of Contents|

[1]刘有华,王思婷,杨乔乔,等.国内外水体富营养化现状及聚磷菌研究进展[J].江苏农业科学,2021,49(9):26-35.
 Liu Youhua,et al.Current situation of eutrophication of water body at home and abroad and research progress of phosphate accumulating bacteria[J].Jiangsu Agricultural Sciences,2021,49(9):26-35.
点击复制

国内外水体富营养化现状及聚磷菌研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第49卷
期数:
2021年第9期
页码:
26-35
栏目:
专论与综述
出版日期:
2021-05-05

文章信息/Info

Title:
Current situation of eutrophication of water body at home and abroad and research progress of phosphate accumulating bacteria
作者:
刘有华12 王思婷1 杨乔乔4 韩迎亚12 王倩楠12 安贤惠123 李联泰123
1.江苏海洋大学江苏省海洋生物资源与生态环境重点实验室,江苏连云港 222000;2.江苏海洋大学江苏省海洋生物技术重点实验室,江苏连云港 222000;3.江苏海洋大学江苏省海洋生物产业技术协同创新中心,江苏连云港 222000; 4.江苏三仪生物工程有限公司,江苏徐州 221300
Author(s):
Liu Youhuaet al
关键词:
水体富营养化聚磷菌生物除磷
Keywords:
-
分类号:
X52;X172
DOI:
-
文献标志码:
A
摘要:
水体的富营养化打破了水环境原有的生态平衡,严重者会导致水生生物大量死亡,加剧水环境污染。水体富营养化主要由氮、磷等营养盐含量过多引起,其中磷是导致水体富营养化最为关键的因素之一。控制水体中的磷含量是解决水体富营养化问题的关键一环。有一类聚磷菌在厌氧/好氧交替培养下能将大量的磷吸入,并以多聚磷酸盐的形式储存于体内。利用这些细菌控制水体磷含量,不仅成本低、效率高,而且不会造成二次污染,是一种环境友好型的解决方法,对解决水体富营养化问题、缓解水资源匮乏以及改善城乡居住环境具有重要意义。针对水体富营养化问题,着重介绍了国内外水体富营养化现状及危害;比较了几种常用除磷方法的优缺点;总结了生物除磷的发展历程,目前分离筛选的聚磷菌种类、特性及其聚磷机理以及聚磷菌在除磷工艺中的应用;探讨了聚磷菌在富营养化水体治理中的应用前景,以期为解决磷超标问题提供有益的参考。
Abstract:
-

参考文献/References:

[1]王静. 富营养化水库沉积物聚磷菌多样性及群落结构研究[D]. 福州:福建师范大学,2017:11-12.
[2]宋小敏. 聚磷微生物的筛选及其对富营养化水体中磷的去除效果研究[D]. 南京:南京理工大学,2015.
[3]刘婷婷. 富营养化湖泊蓝藻及噬藻体光合作用基因psbA多样性的初步研究[D]. 昆明:昆明理工大学,2016:19-20.
[4]马经安,李红清. 浅谈国内外江河湖库水体富营养化状况[J]. 长江流域资源与环境,2002,11(6):575-578.
[5]王以淼,周胜利. 浙江省水体富营养化特征及防治对策[J]. 中国环境监测,2018,34(6):170-178.
[6]曹文平,孙玲,汪银梅,等. 载体在富营养化水体脱氮中的应用现状及发展趋势[J]. 徐州工程学院学报(自然科学版),2019,34(4):83-87.
[7]周石磊. 混合充氧强化水源水库贫营养好氧反硝化菌的脱氮特性及技术应用研究[D]. 西安:西安建筑科技大学,2017:27.
[8]周保华,潘恒健,谷长强. 湖泊水库营养状态分区研究进展[J]. 环境与可持续发展,2006(3):10-13.
[9]Capriulo G M,Smith G,Troy R,et al. The planktonic food web structure of a temperate zone estuary,and its alteration due to eutrophication[J]. Hydrobiologia,2002,475(1):263-333.
[10]王寿兵,徐紫然,张洁. 大型湖库富营养化蓝藻水华防控技术发展述评[J]. 水资源保护,2016,32(4):88-99.
[11]梁伟林. 湖泊富营养化评价方法研究及其系统设计[D]. 成都:电子科技大学,2017.
[12]环保部发布《2011年中国环境状况公报》[J]. 环境经济,2012(7):6.
[13]2018年《中国生态环境状况公报》(摘录二)[J]. 环境保护,2019,7(12):50-55.
[14]Dévai I,Felfldy L,Wittner I,et al. Detection of phosphine:new aspects of the phosphorus cycle in the hydrosphere[J]. Nature,1988,333:343-345.
[15]钟进.生活污水处理工艺中的除磷设计[J]. 绿色科技,2018(12):75-77.
[16]常会庆,杨肖娥,濮培民. 微生物除磷研究与工艺技术的发展前景[J]. 农业环境科学学报,2005,24(增刊1):375-378.
[17]Cook A M,Daughton C G,Lexander M. Phosphonates utilization bybacteria[J]. Bacteriol,1978,133(1):85-90.
[18]喻航. 水体富营养化的危害及防治对策[J]. 智能城市,2019,5(17):147-148.
[19]茹改霞. 富营养化水体除磷技术的研究进展[J]. 广东化工,2017,44(23):100,114.
[20]杨徐烽. 浅析废水除磷工艺[J]. 节能与环保,2020(3):48-49.
[21]刘东强. 化学沉淀对废水除磷效果的研究[J]. 水务世界,2015(2):50-51.
[22]Fraser L H,Carty S M,Steer D. A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosms[J]. Bioresource Technology,2004,94(2):185-192.
[23]吴梦,张大超,徐师,等. 废水除磷工艺技术研究进展[J]. 有色金属科学与工程,2019,10(2):97-103.
[24]Li W,Friedrich R. In situ removal of dissolved phosphorus in irrigation drainage water by planted floats:preliminary results from growth chamber experiment[J]. Agriculture,Ecosystems and Environment,2002,90(1):9-15.
[25]王平,李研伟,王艳明. 污水生物除磷技术的现状与研究进展[J]. 环境污染与防治,2015,37(4):111.
[26]Tang C C,Chen H M,Liu M,et al. Research progress in the use of adsorption for dephosphorization[J]. Industrial Water Treatment,2015,34(7):1-4.
[27]付君正,葛晓红,姚凡凤,等. 去除污水中总磷的两种方法效果比较[J]. 绿色科技,2018(20):92-94.
[28]杨会芳,王芳. 城市生活污水处理厂污水除磷效果的措施[J]. 中国资源综合利用,2018,36(4):38-40,43.
[29]Greenburg A E,Levin G,Kauffman W J. The effect ofphosphorus removal on the activated sludge process[J]. Sewageand Industrial Wastes,1955,27:277-282.
[30]Srinath E G,Sastry C A,Pillai S C. Rapid removal of phosphorus from sewage by activated sludge[J]. Experientia,1959,15(9):339-340.
[31]Alarcon G. Removal of phosphorus from sewage[D]. Baltimore:JohnsHopkins University,1961:14-15.
[32]Levin G V,Shapiro J. Metabolic uptake of phosphorus by wastewater organisms[J]. Water Pollution Control Federation. 1965,37:800-821.
[33]Fuhs G W,Chen M. Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater[J]. Microbial Ecology,1975,2(2):119-138.
[34]Kuba T,Smolder G,Van L M,et al. Biological phosphorus removal from wastewater by anaerobic-aeroxic sequencing batch reactor[J]. Water science&technology,1993,27(5):241-252.
[35]王亚宜,彭永臻,王淑莹,等. 反硝化除磷理论、工艺及影响因素[J]. 中国给水排水,2003,19(1):33-36.
[36]郭丽英,何维,张煜光,等. 一株不动杆菌聚磷菌的除磷效果研究[J]. 广东化工,2019,46(16):37-39.
[37]Buchan L. Possible biological mechanism of phosphorus removal[J]. Water Science&Technology,1983,15(3):87-103.
[38]范琛,袁林江,孙源,等. SBR生物除磷系统中聚磷菌的特性研究[J]. 中国给水排水,2008,24(19):1-5.
[39]Stante L. Biological phosphorus removal by pure culture of Lampropedia spp.[J]. Water Research,1997,31(6):1317-1324.
[40]Brodisch K U,Joyner S J. The role of Micro-Organisms other than acinetobacter in biological phosphate removal in activated sludge processes[J]. Water Science and Technology,1983,15(3):117-125.
[41]何冬兰,詹锐,万文结,等. 一株厌氧型聚磷菌的分离鉴定与聚磷特性[J]. 中南民族大学学报(自然科学版),2016,35(2):23-25,50.
[42]Meganck M,Malnou D,Flohic P L,et al. The importance of the acidogenicmicroflora in biological phosphorus removal[J]. Water ence&Technology,1985,17(11):199-212.
[43]Mullan A,Quinn J P,Mcgrath J W. Enhanced phosphate uptake and polyphosphate accumulation in Burkholderia cepacia grown under low pH conditions[J]. Microbial Ecology,2002,44(1):69-77.
[44]Nakamura K,Hiraishi A,Yoshimi Y,et al. Microlunatus phosphovorus gen. nov.,sp. nov.,a new gram-positive polyphosphate-accumulating bacterium isolated from activated sludge[J]. International Journal of Systematic Bacteriology,1995,45(1):17-22.
[45]Eschenhagen M,Schuppler M,Rske I. Molecular characterization of the microbial community structure in two activated sludge systems for the advanced treatment of domestic effluents[J]. Water Research,2003,37(13):3224-3232.
[46]Ahn J,Daidou T,Tsuneda S,et al. Characterization of denitrifying phosphate-accumulating organisms cultivated under different electron acceptor conditions using polymerase chain reaction-denaturing gradient gel electrophoresis assay[J]. Water Research,2002,36(2):403-412.
[47]孙玲,钱雨荷,张惠芳,等. 反硝化聚磷菌研究进展[J]. 节水灌溉,2015(2):40-44.
[48]Bao L L,Li D,Li X K,et al. Phosphorus accumulation by bacteria isolated from a continuous-flow two-sludge system[J]. Journal of Environmental Sciences-China,2007,19(4):391-395.
[49]Wang Q,Ma F,Wei L,et al. Screen and characteristics of a denitrifying phosphorus-removal bacteria[J]. Journal of Biotechnology,2008,136:123-127.
[50]Diep C N,Cam P M,Vung N H,et al. Isolation of pseudomonas stutzeri in wastewater of catfish fish-ponds in the Mekong delta and its application for wastewater treatment[J]. BioresourceTechnology,2009,100(16):3787-3791.
[51]Li H F,Li B Z,Wang E T,et al. Removal of low concentration of phosphorus from solution by free and immobilized cells of Pseudomonas stutzeri YG-24[J]. Desalination,2011,286:242-247.
[52]Paulo A S,Plugge C M,García E P A,et al. Anaerobic degradation of Sodium dodecyl sulfate(SDS)by denitrifying bacteria[J]. International Biodeterioration& Biodegradation,2013,84(10):14-20.
[53]Versalovic J,Koeuth T,Lupski J R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes[J]. Nucleic Acids Research,1991,19(24):6823-6831.
[54]Wang L,Li J,Kang W L. Bioremediation of eutrophicated water by acinetobactercalcoaceticus[J]. Bulletin of Environmental Contamination and Toxicology,2007,78(6):527-530.
[55]Vaneechoutte M,de Baere T,Nemec A,et al. Reclassification of Acinetobacter grimontii Carr et al. 2003 as a later synonym of Acinetobacter junii Bouvet and Grimont 1986[J]. International Journal of Systematic and Evolutionary Microbiology,2008,58(Pt 4):937-940.
[56]Nemec A,Musílek M,Maixnerová M,et al. Acinetobacter beijerinckii sp. nov. and Acinetobactergyllenbergii sp. nov.,haemolytic organisms isolated from humans[J]. International Journal of Systematic and Evolutionary Microbiology,2009,59(Pt 1):118-124.
[57]张千. 基于固相反硝化和吸附除磷的低碳源污水脱氮除磷技术研究[D]. 重庆:重庆大学,2016:41.
[58]谢蔚鹏,陈敏. 反硝化聚磷菌株YH12的鉴定及脱氮除磷特性[J]. 杭州师范大学学报(自然科学版),2019,18(2):141-145.
[59]张立成,吴春蓉. 不同碳源对4种亚硝化反硝化聚磷菌脱氮除磷的影响[J]. 工业用水与废水,2012,43(6):11-15.
[60]吕志堂,纪翠平,苏强,等. 3株反硝化聚磷菌的分离与鉴定[J]. 环境工程学报,2009,3(8):1405-1408.
[61]Tsuneda S,Ohno T,Soejima K,et al. Simultaneous nitrogen and phosphorus removal using denitrifying phosphate-accumulating organisms in a sequencing batch reactor[J]. Biochemical Engineering Journal,2006,27(3):191-196.
[62]樊晓梅.反硝化聚磷菌吸磷能力和生长特性研究[J]. 沈阳建筑大学学报(自然科学版),2017,33(1):119-126.
[63]孙玲. 反硝化聚磷菌诱变育种及其生物学特性研究[D]. 徐州:中国矿业大学,2017:56-58.
[64]谢蔚鹏,褚文珂,陈敏. 反硝化聚磷菌的筛选及多样性分析[J]. 杭州师范大学学报(自然科学版),2018,17(6):597-601.
[65]李慧,刘丹丹,陈文清. 反硝化聚磷菌的筛选及脱氮除磷特性[J]. 环境工程,2016,34(4):25-28,90.
[66]聂毅磊,贾纬,曾艳兵,等. 两株好氧反硝化聚磷菌的筛选、鉴定及水质净化研究[J]. 生物技术通报,2017,33(3):116-121.
[67]许彦娟,张利平. 反硝化聚磷菌的分离筛选及鉴定[J]. 河北农业大学学报,2008,31(3):60-63.
[68]李相昆,张杰,黄荣新,等. 反硝化聚磷菌的脱氮除磷特性研究[J]. 中国给水排水,2006,22(3):35-39.
[69]焦中志,李相昆,张立成,等. 反硝化聚磷菌菌种筛分与除磷特性分析[J]. 沈阳建筑大学学报(自然科学版),2009,25(3):535-540.
[70]靳茹. 高效好氧反硝化聚磷菌的分离鉴定及脱氮除磷影响因素分析[D]. 太原:太原科技大学,2018:36-37.
[71]陈晶,张敏特,陈萍,等. 菌剂强化潜流湿地总氮总磷去除及功能菌特性[J]. 环境化学,2015,34(12):2268-2274.
[72]郭春艳. 不同电子受体及pH值对聚磷菌代谢的影响[D]. 北京:北京工业大学,2010:77-87.
[73]李楠,王秀蘅,亢涵,等. pH对低温除磷微生物种群与聚磷菌代谢的影响[J]. 环境科学与技术,2013,36(3):9-11+19.
[74]Li W,Zhang H Y,Sun H Z,et al. Influence of pH on short-cut denitrifying phosphorus removal[J]. Water Science and Engineering,2018,11(1):17-22.
[75]Zhang S H,Huang Y,Hua Y M. Denitrifying dephosphatation over nitrite:effects of nitrite concentration,organic carbon,and pH[J]. Bioresource Technology,2010,101(11):3870-3875.
[76]刘有华,韩迎亚,王倩楠,等. 一株聚磷菌的形态特征及其发酵条件研究[J]. 淮海工学院学报(自然科学版),2019,28(4):74-80.
[77]彭党聪,樊香妮,张玲,等. 温度对生物除磷系统微生物种群关系及动力学的影响[J]. 环境工程学报,2017,11(4):2091-2096.
[78]李微,胡筱敏,孙铁珩,等. 温度对SBBR/BAF处理污水效能影响[J]. 环境科学与技术,2010,33(S2):230-233.
[79]王璐. 聚磷菌和聚糖菌及其子群的代谢途径研究[D]. 长春:吉林建筑大学,2018:29-34.
[80]李慧,冯元平,苏公平,等. 反硝化聚磷菌的富集及其特性研究[J]. 四川化工,2016,19(3):4-7.
[81]马放,王春丽,王立立. 高效反硝化聚磷菌株的筛选及其生物学特性[J]. 哈尔滨工程大学学报,2007,28(6):631-635.
[82]Filipe C M,Daigger G T,Grady C L. pH as a key factor in the competition between Glycogen-Accumulating organisms and Phosphorus-Accumulating organisms[J]. Water Environment Research,2001,73(2):223-232.
[83]Li Z K,Pu P W. Improvement of taihu water quality by the technology of immobilized nitrogen cycle bacteria[J]. Nuclear Science and Techniyues,2002,13(2):115-120.
[84]Wachtmeister A,Kuba T,Loosdrecht M C,et al. A sludge characterization assay for aerobic and denitrifying phosphorus removing sludge[J]. Water Research,1997,31(3):471-478.
[85]Carvalho G,Lemos P C,Oehmen A,et al. Denitrifying phosphorus removal:linking the process performance with the microbial community structure[J]. Water Research,2007,41(19):4383-4396.
[86]Barak Y,van Rijn J. Relationship between nitrite reduction and active phosphate uptake in the phosphate-accumulating denitrifier Pseudomonas sp. strain JR 12[J]. Applied and Environmental Microbiology,2000,66(12):5236-5240.
[87]张静思,崔俊涛. 城市污泥中高效聚磷真菌的筛选及聚磷特性分析?[J]. 吉林农业大学学报,2015,37(2):185-190.
[88]Chuang S H,Ouyang C F,Wang Y B. Kinetic competition between phosphorus release and denitrification on sludge under anoxic condition[J]. Water Research,1996,30(12):2961-2968.
[89]Bortone G,Libelli S M,Tilche A,et al. Anoxic phosphate uptake in the dephanox process[J]. Water Science & Technology,1999,40(4):177-185.
[90]Lemos P C,Dai Y,Yuan Z,et al. Elucidation of metabolic pathways in glycogen-accumulating organisms with in vivo 13C nuclear magnetic resonance[J]. Environmental Microbiology,2007,9(11):2694-2706.
[91]田淑媛,杨睿,顾平,等. 生物除磷工艺技术发展[J]. 城市环境与城市生态,2000,13(4):45-47.
[92]王琳,李季,康文利,等. 污水生物除磷研究进展[J]. 环境污染与防治,2006,28(5):348-351.
[93]Chen Y,Zhao Z,Peng Y,et al. Performance of a full-scale modified anaerobic/anoxic/oxic process:High-throughput sequence analysis of its microbial structures and their community functions[J]. Bioresource Technology,2016,220:225-232.
[94]祁晓娟. 污水处理工艺的应用分析[J]. 决策探索:中,2020(3):92-93.
[95]曹海艳,孙云丽,刘必成,等. 废水生物除磷技术综述[J]. 水科学与工程技术,2006(5):25-28.
[96]Wang D B,Li X M,Yang Q,et al. Improved biological phosphorus removal performance driven by the aerobic/extended-idle regime with propionate as the sole carbon source[J]. Water Research,2012,46(12):3868-3878.
[97]刘钰,刘飞萍,刘霞,等. 催化铁耦合生物除磷工艺中生物与化学除磷的关系[J]. 环境工程学报,2016,10(2):611-616.
[98]李子富,云玉攀,曾灏,等. 城市污水处理厂化学强化生物除磷的试验研究[J]. 中国环境科学,2014,34(12):3070-3077.

相似文献/References:

[1]徐德兰,张翠英.菖蒲对模拟湖泊环境下磷空间分布和碱性磷酸酶活性的影响[J].江苏农业科学,2014,42(08):368.
 Xu Delan,et al.Effects of calamus on spatial distribution of phosphorus and alkaline phosphatase activity under simulation of lake environment[J].Jiangsu Agricultural Sciences,2014,42(9):368.
[2]潘明安,黄仁军,袁天泽,等.丘陵区菌渣还田对稻田土壤氮磷含量的影响[J].江苏农业科学,2014,42(08):343.
 Pan Mingan,et al.Effects of edible fungi residues returning to fields on nitrogen and phosphorus contents of soil in paddy fields of hilly areas[J].Jiangsu Agricultural Sciences,2014,42(9):343.
[3]张进,余志耀,陆佳伟,等.标准户用沼气池和红泥沼气袋处理养猪废水对比研究[J].江苏农业科学,2013,41(09):368.
 Zhang Jin,et al.Comparative study of piggery wastewater treatment between household biogas digester and red plastic biogas fermentation bag[J].Jiangsu Agricultural Sciences,2013,41(9):368.
[4]杨志红,田前进,吴诗谣,等.芦竹对富营养化水体中磷及微生物的影响[J].江苏农业科学,2014,42(01):297.
 Yang Zhihong,et al.Effects of Arundo donax L. on phosphorus pollution and microorganisms in eutrophic water[J].Jiangsu Agricultural Sciences,2014,42(9):297.
[5]雷钧镒,李猛,马旭洲,等.青萍对富营养化水体氮、磷的去除效果[J].江苏农业科学,2014,42(01):325.
 Lei Junyi,et al.Removal effect of Lemna minor on nitrogen and phosphorus in eutrophic water[J].Jiangsu Agricultural Sciences,2014,42(9):325.
[6]袁瑞霞,于鹏.中国主要水稻种植区土壤对磷的吸附与解吸特性——以日本宇都宫土壤为参照[J].江苏农业科学,2014,42(02):286.
 Yuan Ruixia,et al.Characteristics of adsorption and desorption of phosphate in soils from Chinas main rice-growing areas—Compared with Utsunomiya soil of Japan[J].Jiangsu Agricultural Sciences,2014,42(9):286.
[7]余月书,李翠兰,姜晓雯,等.吡蚜酮和百菌清对绿萝生长的Hormesis效应[J].江苏农业科学,2016,44(06):301.
 Yu Yueshu,et al.Hormesis effects of pymetrozine and chlorthalonil on growth of Epipremnum aureus[J].Jiangsu Agricultural Sciences,2016,44(9):301.
[8]刘洋,潘国浩,付强,等.盐城市滨海滩涂围垦区农作物氮、磷累积特征[J].江苏农业科学,2016,44(02):385.
 Liu Yang,et al.Crop nitrogen and phosphorus accumulation characteristics in coastal tideland reclamation district of Yancheng City[J].Jiangsu Agricultural Sciences,2016,44(9):385.
[9]张飞,唐杰,马炯,等.太湖流域浮萍种质资源及其生长水环境调查[J].江苏农业科学,2016,44(01):336.
 Zhang Fei,et al.Investigation of duckweed germplasm resources and their growth water environments in Tai Lake[J].Jiangsu Agricultural Sciences,2016,44(9):336.
[10]杨亚琴,王恒松,周亚利.不同园林植物根际和非根际土壤养分的差异[J].江苏农业科学,2015,43(12):360.
 Yang Yaqing,et al.Study on rhizosphere and non-rhizosphere soil nutrient in different landscape plants[J].Jiangsu Agricultural Sciences,2015,43(9):360.

备注/Memo

备注/Memo:
收稿日期:2020-03-12
基金项目:江苏省研究生科研与实践创新计划(编号:SJCX19-0990);江苏省优势学科建设工程资助项目(编号:PAPD)。
作者简介:刘有华(1995—),男,贵州凯里人,硕士研究生,研究方向为环境微生物资源与应用。E-mail:18360348311@163.com。
通信作者:李联泰,博士,教授,主要从事环境微生物研究。E-mail:lilt@jou.edu.cn。
更新日期/Last Update: 2021-05-05