|本期目录/Table of Contents|

[1]高志远,袁鸣,姚槐应,等.极端干旱对土壤微生物群落和功能的影响研究进展[J].江苏农业科学,2021,49(13):35-45.
 Gao Zhiyuan,et al.Research progress on effect of extreme drought on soil microbial communities and their functions[J].Jiangsu Agricultural Sciences,2021,49(13):35-45.
点击复制

极端干旱对土壤微生物群落和功能的影响研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第49卷
期数:
2021年第13期
页码:
35-45
栏目:
专论与综述
出版日期:
2021-07-05

文章信息/Info

Title:
Research progress on effect of extreme drought on soil microbial communities and their functions
作者:
高志远1 袁鸣1 姚槐应123 葛超荣1
1.武汉工程大学环境生态与生物工程学院,湖北武汉 430205; 2.中国科学院城市环境研究所,福建厦门 361021;3.中国科学院宁波城市环境观测研究站,浙江宁波 315800
Author(s):
Gao Zhiyuanet al
关键词:
极端干旱土壤微生物响应微生物群落微生物功能
Keywords:
-
分类号:
S154.3
DOI:
-
文献标志码:
A
摘要:
随着现代社会的快速发展和人类活动的日益增多,极端气候如干旱和高温等事件越来越频繁地出现。干旱和高温的同时发生容易形成极端干旱,不仅会改变土壤基本理化性质及功能,还会影响土壤微生物群落的组成和结构,同时对微生物介导的土壤微生物过程及生物地球化学循环产生深远影响,因此了解极端干旱如何影响土壤微生物群落及其功能显得至关重要。本文从个体到群落的角度综述了极端干旱对土壤微生物的影响及微生物对极端干旱的响应,包括极端干旱对微生物DNA及细胞完整性造成的伤害、对细菌群落和真菌群落组成的影响、对土壤微生物介导的碳氮循环功能的影响以及极端干旱下根际分泌物对根际微生物功能的影响,最后从交叉学科原位研究角度和分子组学角度对相关机理进行了展望。
Abstract:
-

参考文献/References:

[1]IPCC. Climate change 2014[M]. Cambridge:Cambridge University Press,2014.
[2]IPCC. Climate change 2013[M]. Cambridge:Cambridge University Press,2013.
[3]Heisler J L,Weltzin J F. Variability matters:towards a perspective on the influence of precipitation on terrestrial ecosystems[J]. New Phytologist,2006,172(2):189-192.
[4]Huang J P,Yu H P,Guan X D,et al. Accelerated dryland expansion under climate change[J]. Nature Climate Change,2016,6(2):166-171.
[5]Chakraborty S,Pangga I,Roper M. Climate change and multitrophic interactions in soil:the primacy of plants and functional domains[J]. Global Change Biology,2012,18(7):2111-2125.
[6]Reynolds H L,Packer A,Bever J D,et al. Grassroots ecology:plant-microbe-soil interactions as drivers of plant community structure and dynamics [J]. Ecology,2003,84(9):2281-2291.
[7]Wardle D A,Bardgett R D,Klironomos J N,et al. Ecological linkages between aboveground and belowground biota [J]. Science,2004,304(5677):1629-1633.
[8]Jentsch A,Kreyling J,Elmer M,et al. Climate extremes initiate ecosystem-regulating functions while maintaining productivity[J]. Journal of Ecology,2011,99(3):689-702.
[9]Berard A,Bouchet T,Sévenier G,et al. Resilience of soil microbial communities impacted by severe drought and high temperature in the context of Mediterranean heat waves[J]. European Journal of Soil Biology,2011,47(6):333-342.
[10]Wang H,Yang J P,Yang S H,et al. Effect of a 10 ℃-elevated temperature under different water contents on the microbial community in a tea orchard soil [J]. European Journal of Soil Biology,2014,62:113-120.
[11]Acosta-Martínez V,Cotton J,Gardner T,et al. Predominant bacterial and fungal assemblages in agricultural soils during a record drought/heat wave and linkages to enzyme activities of biogeochemical cycling [J]. Applied Soil Ecology,2014,84:69-82.
[12]Acosta-Martinez V,Moore-Kucera J,Cotton J,et al. Soil enzyme activities during the 2011 Texas record drought/heat wave and implications to biogeochemical cycling and organic matter dynamics [J]. Applied Soil Ecology,2014,75:43-51.
[13]Schimel J,Balser T C,Wallenstein M. Microbial stress-response physiology and its implications for ecosystem function[J]. Ecology,2007,88(6):1386-1394.
[14]Allison S D,Martiny J B H. Resistance,resilience,and redundancy in microbial communities [J]. PNAS,2008,105(s1):11512-11519.
[15]Davidson E A,Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature,2006,440(781):165-173.
[16]Parker S S,Schimel J P. Soil nitrogen availability and transformations differ between the summer and the growing season in a California grassland[J]. Applied Soil Ecology,2011,48(2):185-192.
[17]Navarro-Garcia F,Casermeiro M A,Schimel J P. When structure means conservation:effect of aggregate structure in controlling microbial responses to rewetting events [J]. Soil Biology & Biochemistry,2012,44(1):1-8.
[18]Hamdi S,Chevallier T,Ben Aissa N,et al. Short-term temperature dependence of heterotrophic soil respiration after one-month of pre-incubation at different temperatures[J]. Soil Biology & Biochemistry,2011,43(9):1752-1758.
[19]Manzoni S,Schimel J P,Porporato A. Responses of soil microbial communities to water stress:results from a meta-analysis[J]. Ecology,2012,93(4):930-938.
[20]Vriezen J C,de Bruijn F J,Nüsslein K. Responses of rhizobia to desiccation in relation to osmotic stress,oxygen,and temperature[J]. Applied and Environmental Microbiology,2007,73(11):3451-3459.
[21]García A H. Anhydrobiosis in bacteria:from physiology to applications[J]. Journal of Biosciences,2011,36(5):939-950.
[22]Billi D,Potts M. Life and death of dried prokaryotes[J]. Research in Microbiology,2002,153(1):7-12.
[23]Schumann W. Temperature sensors of eubacteria [J]. Advances in Applied Microbiology,2009,67:213-256.
[24]Dose K,Bieger-Dose A,Kerz O,et al. DNA-strand breaks limit survival in extreme dryness[J]. Origins of Life and Evolution of the Biosphere,1991,21(3):177-187.
[25]Potts M. Desiccation tolerance of prokaryotes[J]. Microbiological Reviews,1994,58(4):755-805.
[26]Potts M. Desiccation tolerance:a simple process?[J]. Trends in Microbiology,2001,9(11):553-559.
[27]Russell N J,Evans R I,ter Steeg P,et al. Membranes as a target for stress adaptation[J]. International Journal of Food Microbiology,1995,28(2):255-261.
[28]Hecker M,Schumann W,Vlker U. Heat-shock and general stress response in Bacillus subtilis[J]. Molecular Microbiology,1996,19(3):417-428.
[29]Placella S A,Brodie E L,Firestone M K. Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups[J]. PNAS,2012,109(27):10931-10936.
[30]Kakumanu M L,Cantrell C L,Williams M A. Microbial community response to varying magnitudes of desiccation in soil:a test of the osmolyte accumulation hypothesis [J]. Soil Biology & Biochemistry,2013,57:644-653.
[31]Zhang Q,Yan T. Correlation of intracellular trehalose concentration with desiccation resistance of soil Escherichia coli populations[J]. Applied and Environmental Microbiology,2012,78(20):7407-7413.
[32]Lennon J T,Jones S E. Microbial seed banks:the ecological and evolutionary implications of dormancy[J]. Nature Reviews Microbiology,2011,9(2):119-130.
[33]Kültz D. Molecular and evolutionary basis of the cellular stress response[J]. Annual Review of Physiology,2005,67:225-257.
[34]Ruamps L S,Nunan N,Chenu C. Microbial biogeography at the soil pore scale[J]. Soil Biology & Biochemistry,2011,43(2):280-286.
[35]Voroney R P. 2-The soil habitat [M]//Soil Microbiology,Ecology & Biochemistry,Academic Press,2007:25-49.
[36]Ettema C H,Wardle D A. Spatial soil ecology[J]. Trends in Ecology & Evolution,2002,17(4):177-183.
[37]贾全全,黄宝祥,刘丽婷,等. 水栀子根结线虫种群动态及其对土壤微环境的影响[J]. 南方林业科学,2019,47(1):33-36,48.
[38]Denef K,Six J,Bossuyt H,et al. Influence of dry-wet cycles on the interrelationship between aggregate,particulate organic matter,and microbial community dynamics[J]. Soil Biology & Biochemistry,2001,33(12/13):1599-1611.
[39]Alaoui A,Lipiec J,Gerke H H. A review of the changes in the soil pore system due to soil deformation:a hydrodynamic perspective [J]. Soil & Tillage Research,2011,115/116:1-15.
[40]马媛媛,戴显庆,彭绍好,等. 天然沸石对松嫩平原黑钙土理化性质和保水能力的影响[J]. 北京林业大学学报,2018,40(2):51-57.
[41]Usowicz B,Lipiec J,Usowicz J B,et al. Effects of aggregate size on soil thermal conductivity:comparison of measured and model-predicted data[J]. International Journal of Heat and Mass Transfer,2013,57(2):536-541.
[42]Bertram J E,Orwin K H,Clough T J,et al. Effect of soil moisture and bovine urine on microbial stress[J]. Pedobiologia,2012,55(4):211-218.
[43]Thompson L R,Sanders J G,Mcdonald D,et al. A communal catalogue reveals Earths multiscale microbial diversity[J]. Nature,2017,551(7681):457-463.
[44]Fernández-Calvio D,Bth E. Growth response of the bacterial community to pH in soils differing in pH[J]. FEMS Microbiology Ecology,2010,73(1):149-156.
[45]Navarro-García F,ngel Casermeiro M,Schimel J P. When structure means conservation:effect of aggregate structure in controlling microbial responses to rewetting events [J]. Soil Biology & Biochemistry,2012,44(1):1-8.
[46]Zhang B,Deng H,Wang H L,et al. Does microbial habitat or community structure drive the functional stability of microbes to stresses following re-vegetation of a severely degraded soil?[J]. Soil Biology & Biochemistry,2010,42(5):850-859.
[47]Conant R T,Ryan M G,Agren G I,et al. Temperature and soil organic matter decomposition rates—Synthesis of current knowledge and a way forward[J]. Global Change Biology,2011,17(11):3392-3404.
[48]Hamdi S,Moyano F,Sall S,et al. Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions [J]. Soil Biology & Biochemistry,2013,58:115-126.
[49]台喜荣,冯骞,孙亚青,等. 胞外DNA在生物膜形成及发展过程中的作用[J]. 净水技术,2019,38(11):54-60.
[50]Flemming H C,Wingender J. The biofilm matrix[J]. Nature Reviews Microbiology,2010,8(9):623-633.
[51]Rossi F,Potrafka R M,Pichel F G,et al. The role of the exopolysaccharides in enhancing hydraulic conductivity of biological soil crusts [J]. Soil Biology & Biochemistry,2012,46:33-40.
[52]Wu N,Zhang Y M,Pan H X,et al. The role of nonphotosynthetic microbes in the recovery of biological soil crusts in the gurbantunggut desert,northwestern China[J]. Arid Land Research and Management,2010,24(1):42-56.
[53]Mager D M,Thomas A D. Extracellular polysaccharides from cyanobacterial soil crusts:a review of their role in dryland soil processes[J]. Journal of Arid Environments,2011,75(2):91-97.
[54]Schaumann G E,Braun B,Kirchner D,et al. Influence of biofilms on the water repellency of urban soil samples[J]. Hydrological Processes,2010,21(17):2276-2284.
[55]Sandhya V,Skz A,Grover M,et al. Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45[J]. Biology and Fertility of Soils,2009,46(1):17-26.
[56]Redmile-Gordon M A,Brookes P C,Evershed R P,et al. Measuring the soil-microbial interface:extraction of extracellular polymeric substances (EPS) from soil biofilms [J]. Soil Biology & Biochemistry,2014,72:163-171.
[57]Tardy V,Mathieu O,Lévêque J,et al. Stability of soil microbial structure and activity depends on microbial diversity[J]. Environmental Microbiology Reports,2014,6(2):173-183.
[58]Shade A,Peter H,Allison S D,et al. Fundamentals of microbial community resistance and resilience[J]. Frontiers in Microbiology,2012,3:417.
[59]Riah-Anglet W,Trinsoutrot-Gattin I,Martin-Laurent F,et al. Soil microbial community structure and function relationships:a heat stress experiment [J]. Applied Soil Ecology,2015,86:121-130.
[60]Yuste J C,Penuelas J,Estiarte M,et al. Drought-resistant fungi control soil organic matter decomposition and its response to temperature[J]. Global Change Biology,2011,17(3):1475-1486.
[61]Poll C,Ingwersen J,Stemmer M,et al. Mechanisms of solute transport affect small-scale abundance and function of soil microorganisms in the detritusphere[J]. European Journal of Soil Science,2010,57(4):583-595.
[62]Barnard R L,Osborne C A,Firestone M K. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting[J]. The ISME Journal,2013,7(11):2229-2241.
[63]Zeglin L H,Bottomley P J,Jumpponen A,et al. Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales[J]. Ecology,2013,94(10):2334-2345.
[64]Castro Gonzalez H F,Classen A T,Austin E E,et al. Soil microbial community responses to multiple experimental climate change drivers[J]. Applied and Environmental Microbiology,2010,76(4):999-1007.
[65]Rokitko P V,Romanovskaia V A,Malashenko I,et al. Soil drying as a model for the action of stress factors on natural bacterial populations [J]. Mikrobiologiia,2003,72(6):854-861.
[66]Kempf B,Bremer E. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments[J]. Archives of Microbiology,1998,170(5):319-330.
[67]Uhlírová E,Elhottová D,Tríska J,et al. Physiology and microbial community structure in soil at extreme water content[J]. Folia Microbiologica,2005,50(2):161-166.
[68]Hamer U,Unger M,Manuela F,et al. Impact of air-drying and rewetting on PLFA profiles of soil microbial communities[J]. Journal of Plant Nutrition and soil Science,2007,170(2):259-264.
[69]de Vries F T,Shade A. Controls on soil microbial community stability under climate change[J]. Frontiers in Microbiology,2013,4:265.
[70]Vásquez-Dean J,Maza F,Morel I,et al. Microbial communities from arid environments on a global scale. A systematic review[J]. Biological Research,2020,53(1):29.
[71]Chanal A,Chapon V,Benzerara K,et al. The desert of Tataouine:an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria[J]. Environmental Microbiology,2006,8(3):514-525.
[72]Nagy M L,Pérez A,Garcia-Pichel F. The prokaryotic diversity of biological soil crusts in the Sonoran Desert (Organ Pipe Cactus National Monument,AZ)[J]. FEMS Microbiology Ecology,2005,54(2):233-245.
[73]Yao M J,Rui J P,Niu H S,et al. The differentiation of soil bacterial communities along a precipitation and temperature gradient in the eastern Inner Mongolia steppe[J]. Catena,2017,152:47-56.
[74]Kumar S,Suyal D C,Yadav A,et al. Microbial diversity and soil physiochemical characteristic of higher altitude[J]. PLoS One,2019,14(3):e0213844.
[75]Riah-Anglet W,Trinsoutrot-Gattin I,Martin-Laurent F,et al. Soil microbial community structure and function relationships:a heat stress experiment [J]. Applied Soil Ecology,2015,86:121-130.
[76]Ramirez K S,Geisen S,Morrin E,et al. Network analyses can advance above-belowground ecology[J]. Trends in Plant Science,2018,23(9):759-768.
[77]de Vries F T,Griffiths R I,Bailey M,et al. Soil bacterial networks are less stable under drought than fungal networks[J]. Nature Communications,2018,9:3033.
[78]de Vries F T,Liiri M E,Bjrnlund L,et al. Land use alters the resistance and resilience of soil food webs to drought[J]. Nature Climate Change,2012,2(4):276-280.
[79]Bapiri A,Bth E,Rousk J. Drying-rewetting cycles affect fungal and bacterial growth differently in an arable soil[J]. Microbial Ecology,2010,60(2):419-428.
[80]Rooney N,McCann K,Gellner G,et al. Structural asymmetry and the stability of diverse food webs[J]. Nature,2006,442(710):265-269.
[81]Neutel A M,Heesterbeek J A,De Ruiter P C. Stability in real food webs:weak links in long loops[J]. Science,2002,296(5570):1120-1123.
[82]Coyte K Z,Schluter J,Foster K R. The ecology of the microbiome:networks,competition,and stability[J]. Science,2015,350(6261):663-666.
[83]Stouffer D B,Bascompte J. Compartmentalization increases food-web persistence[J]. PNAS,2011,108(9):3648-3652.
[84]Freilich M A,Wieters E,Broitman B R,et al. Species co-occurrence networks:can they reveal trophic and non-trophic interactions in ecological communities?[J]. Ecology,2018,99(3):690-699.
[85]Berry D,Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks[J]. Frontiers in Microbiology,2014,5:219.
[86]Barberán A,Bates S T,Casamayor E O,et al. Using network analysis to explore co-occurrence patterns in soil microbial communities[J]. The ISME Journal,2012,6(2):343-351.
[87]Koch A L. The biophysics of the gram-negative periplasmic space[J]. Critical Reviews in Microbiology,1998,24(1):23-59.
[88]Wood J M. Osmosensing by bacteria:signals and membrane-based sensors[J]. Microbiology and Molecular Biology Reviews,1999,63(1):230-262.
[89]Fierer N,Schimel J P,Holden P A. Influence of drying-rewetting frequency on soil bacterial community structure[J]. Microbial Ecology,2003,45(1):63-71.
[90]Borken W,Matzner E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils[J]. Global Change Biology,2009,15(4):808-824.
[91]胡振琪,纪晶晶,王幼珊,等. AM真菌对复垦土壤中苜蓿养分吸收的影响[J]. 中国矿业大学学报,2009,38(3):428-432,449.
[92]Kaisermann A,Maron P A,Beaumelle L,et al. Fungal communities are more sensitive indicators to non-extreme soil moisture variations than bacterial communities [J]. Applied Soil Ecology,2015,86:158-164.
[93]Hawkes C V,Kivlin S N,Rocca J D,et al. Fungal community responses to precipitation[J]. Global Change Biology,2015,17(4):1637-1645.
[94]Suttle K B,Thomsen M A,Power M E. Species interactions reverse grassland responses to changing climate[J]. Science,2007,315(5812):640-642.
[95]Waldrop M P,Zak D R,Blackwood C B,et al. Resource availability controls fungal diversity across a plant diversity gradient[J]. Ecology Letters,2006,9(10):1127-1135.
[96]Witteveen C F B,Visser J. Polyol pools in Aspergillus niger[J]. FEMS Microbiology Letters,1995,134(1):57-62.
[97]Schimel J P,Scott W J,Killham K. Changes in cytoplasmic carbon and nitrogen pools in a soil bacterium and a fungus in response to salt stress[J]. Applied and Environmental Microbiology,1989,55(6):1635-1637.
[98]Evans S E,Wallenstein M D. Soil microbial community response to drying and rewetting stress:does historical precipitation regime matter?[J]. Biogeochemistry,2012,109(1):101-116.
[99]Gordon H,Haygarth P M,Bardgett R D. Drying and rewetting effects on soil microbial community composition and nutrient leaching[J]. Soil Biology & Biochemistry,2008,40(2):302-311.
[100]Bell T,Newman J A,Silverman B W,et al. The contribution of species richness and composition to bacterial services[J]. Nature,2005,436(754):1157-1160.
[101]Strickland M S,Lauber C,Fierer N,et al. Testing the functional significance of microbial community composition[J]. Ecology,2009,90(2):441-451.
[102]Unger S,Máguas C,Pereira J S,et al. The influence of precipitation pulses on soil respiration—Assessing the“Birch effect”by stable carbon isotopes[J]. Soil Biology & Biochemistry,2010,42(10):1800-1810.
[103]Mills R T E,Gavazov K S,Spiegelberger T,et al. Diminished soil functions occur under simulated climate change in a sup-alpine pasture,but heterotrophic temperature sensitivity indicates microbial resilience [J]. Science of the Total Environment,2014,473/474:465-472.
[104]Novem A D,Suseela V,Dukes J S. Warming and drought reduce temperature sensitivity of nitrogen transformations[J]. Global Change Biology,2013,19(2):662-676.
[105]Moyano F E,Manzoni S,Chenu C. Responses of soil heterotrophic respiration to moisture availability:an exploration of processes and models [J]. Soil Biology & Biochemistry,2013,59:72-85.
[106]Blagodatskaya E,Kuzyakov Y. Active microorganisms in soil:critical review of estimation criteria and approaches [J]. Soil Biology & Biochemistry,2013,67:192-211.
[107]Sanaullah M,Blagodatskaya E,Chabbi A,et al. Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depend on plant community composition[J]. Applied Soil Ecology,2011,48(1):38-44.
[108]Tiemann L K,Billings S A. Tracking C and N flows through microbial biomass with increased soil moisture variability [J]. Soil Biology & Biochemistry,2012,44:11-22.
[109]Steinweg J M,Dukes J S,Paul E A,et al. Microbial responses to multi-factor climate change:effects on soil enzymes[J]. Frontiers in Microbiology,2013,4:146.
[110]Homyak P M,Allison S D,Huxman T E,et al. Effects of drought manipulation on soil nitrogen cycling:a meta-analysis[J]. Journal of Geophysical Research:Biogeosciences,2017,122(12):3260-3272.
[111]Wanek W,Mooshammer M,Blchl A,et al. Determination of gross rates of amino acid production and immobilization in decomposing leaf litter by a novel 15N isotope pool dilution technique[J]. Soil Biology & Biochemistry,2010,42(8):1293-1302.
[112]Wild B,Ambus P,Reinsch S,et al. Resistance of soil protein depolymerization rates to eight years of elevated CO2,warming,and summer drought in a temperate heathland[J]. Biogeochemistry,2018,140(3):255-267.
[113]Frey S D,Lee J,Melillo J M,et al. The temperature response of soil microbial efficiency and its feedback to climate[J]. Nature Climate Change,2013,3(4):395-398.
[114]Dijkstra P,Salpas E,Fairbanks D,et al. High carbon use efficiency in soil microbial communities is related to balanced growth,not storage compound synthesis [J]. Soil Biology & Biochemistry,2015,89:35-43.
[115]Melillo J M,Frey S D,DeAngelis K M,et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world[J]. Science,2017,358(6359):101-105.
[116]吴堂清,周昭芬,王鑫铭,等. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报,2019,39(3):227-234.
[117]Alvarez G,Shahzad T,Andanson L,et al. Catalytic power of enzymes decreases with temperature:new insights for understanding soil C cycling and microbial ecology under warming[J]. Global Change Biology,2018,24(9):4238-4250.
[118]Larsen K S,Andresen L C,Beier C,et al. Reduced N cycling in response to elevated CO2,warming,and drought in a Danish heathland:synthesizing results of the CLIMAITE project after two years of treatments[J]. Global Change Biology,2011,17(5):1884-1899.
[119]Niboyet A,Le Roux X,Dijkstra P,et al. Testing interactive effects of global environmental changes on soil nitrogen cycling[J]. Ecosphere,2011,2(5):1-24.
[120]Xiang S R,Doyle A,Holden P A,et al. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils[J]. Soil Biology & Biochemistry,2008,40(9):2281-2289.
[121]Zhao B Z,Chen J,Zhang J B,et al. Soil microbial biomass and activity response to repeated drying-rewetting cycles along a soil fertility gradient modified by long-term fertilization management practices[J]. Geoderma,2010,160(2):218-224.
[122]Wu J,Brookes P C. The proportional mineralisation of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil[J]. Soil Biology & Biochemistry,2005,37(3):507-515.
[123]Shepherd M,Lucci G,Vogeler I,et al. The effect of drought and nitrogen fertiliser addition on nitrate leaching risk from a pasture soil;an assessment from a field experiment and modelling[J]. Journal of the Science of Food and Agriculture,2018,98(10):3795-3805.
[124]Franzluebbers A J. Potential C and N mineralization and microbial biomass from intact and increasingly disturbed soils of varying texture[J]. Soil Biology and Biochemistry,1999,31(8):1083-1090.
[125]Murphy D V,Sparling G P,Fillery I P,et al. Mineralisation of soil organic nitrogen and microbial respiration after simulated summer rainfall events in an agricultural soil[J]. Soil Research,1998,36(2):231-246.
[126]Butterly C R,Marschner P,McNeill A M,et al. Rewetting CO2 pulses in Australian agricultural soils and the influence of soil properties[J]. Biology and Fertility of Soils,2010,46(7):739-753.
[127]Mikha M M,Rice C W,Milliken G A. Carbon and nitrogen mineralization as affected by drying and wetting cycles[J]. Soil Biology & Biochemistry,2005,37(2):339-347.
[128]Appel T. Non-biomass soil organic N-the substrate for N mineralization flushes following soil drying-rewetting and for organic N rendered CaCl2-extractable upon soil drying[J]. Soil Biology & Biochemistry,1998,30(10/11):1445-1456.
[129]Jin V L,Haney R L,Fay P A,et al. Soil type and moisture regime control microbial C and N mineralization in grassland soils more than atmospheric CO2-induced changes in litter quality [J]. Soil Biology & Biochemistry,2013,58:172-180.
[130]Miller A E,Schimel J P,Meixner T,et al. Episodic rewetting enhances carbon and nitrogen release from chaparral soils[J]. Soil Biology & Biochemistry,2005,37(12):2195-2204.
[131]Van Der Heijden M A. Bardgett R D,Van Straalen N M. The unseen majority:soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecology Letters,2008,11(3):296-310.
[132]杨雍康,药栋,李博,等. 微生物群落在修复重金属污染土壤过程中的作用[J]. 江苏农业学报,2020,36(5):1322-1331.
[133]Chaparro J M,Badri D V,Vivanco J M. Rhizosphere microbiome assemblage is affected by plant development[J]. The ISME Journal,2014,8(4):790-803.
[134]王攀,朱湾湾,牛玉斌,等. 氮添加对荒漠草原植物群落组成与微生物生物量生态化学计量特征的影响[J]. 植物生态学报,2019,43(5):427-436.
[135]王静娅,王明亮,张凤华. 干旱区典型盐生植物群落下土壤微生物群落特征[J]. 生态学报,2016,36(8):2363-2372.
[136]Zhalnina K,Louie K B,Hao Z,et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J]. Nature Microbiology,2018,3(4):470-480.
[137]Stringlis I A,Yu K,Feussner K,et al. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(22):5213-5222.
[138]Lu T,Ke M J,Lavoie M,et al. Rhizosphere microorganisms can influence the timing of plant flowering[J]. Microbiome,2018,6(1):231.
[139]Mommer L,Hinsinger P,Prigent-Combaret C,et al. Advances in the rhizosphere:stretching the interface of life[J]. Plant and Soil,2016,407(1):1-8.
[140]Karlowsky S,Augusti A,Ingrisch J,et al. Land use in mountain grasslands alters drought response and recovery of carbon allocation and plant-microbial interactions[J]. Journal of Ecology,2018,106(3):1230-1243.
[141]Canarini A,Merchant A,Dijkstra F A. Drought effects on Helianthus annuus and Glycine max metabolites:from phloem to root exudates [J]. Rhizosphere,2016,2:85-97.
[142]Gargallo-Garriga A,Preece C,Sardans J,et al. Root exudate metabolomes change under drought and show limited capacity for recovery[J]. Scientific Reports,2018,8(1):12696.
[143]Quiroga G,Erice G,Aroca R,et al. Enhanced drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought-sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought-tolerant cultivar[J]. Frontiers in Plant Science,2017,8:1056.
[144]Henry A,Doucette W,Norton J,et al. Changes in crested wheatgrass root exudation caused by flood,drought,and nutrient stress[J]. Journal of Environmental Quality,2007,36(3):904-912.
[145]Allard-Massicotte R,Tessier L,Lécuyer F,et al. Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors[J]. mBio,2016,7(6):1616-1664.
[146]Gagné-Bourque F,Bertrand A,Claessens A,et al. Alleviation of drought stress and metabolic changes in timothy (Phleum pratense L.) colonized with Bacillus subtilis B26[J]. Frontiers in Plant Science,2016,7:584.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2020-11-17
基金项目:国家自然科学基金(编号:41976151、41907136);国家重点研发计划(编号:2016YFC0502704)。
作者简介:高志远(1992—),女,河南新乡人,硕士研究生,主要从事土壤微生物学研究。E-mail:gzyuan123@yeah.net。
通信作者:姚槐应,博士,教授,博士生导师,主要从事土壤微生物生态学研究,E-mail:hyyao@iue.ac.cn;葛超荣,博士,副教授,主要从事微生物学研究,E-mail:c
更新日期/Last Update: 2021-07-05