|本期目录/Table of Contents|

[1]热依法提·艾尼瓦尔,许仲林,常亚鹏,等.天山雪岭云杉林土壤生态化学计量特征的空间分布模拟[J].江苏农业科学,2021,49(17):208-215.
 Reyifati Ainiwaer,et al.Spatial distribution simulation of soil ecological stoichiometric characteristics of Schrenk spruce forest in Tianshan Mountains[J].Jiangsu Agricultural Sciences,2021,49(17):208-215.
点击复制

天山雪岭云杉林土壤生态化学计量特征的空间分布模拟(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第49卷
期数:
2021年第17期
页码:
208-215
栏目:
资源与环境
出版日期:
2021-09-05

文章信息/Info

Title:
Spatial distribution simulation of soil ecological stoichiometric characteristics of Schrenk spruce forest in Tianshan Mountains
作者:
热依法提·艾尼瓦尔12许仲林12常亚鹏3李路4
1.新疆大学资源与环境科学学院,新疆乌鲁木齐 830046; 2.新疆大学绿洲生态教育部重点实验室,新疆乌鲁木齐 830046;3.兰州大学草地农业科技学院,甘肃兰州 730020; 4.西安石油大学计算机学院,陕西西安 710065
Author(s):
Reyifati Ainiwaeret al
关键词:
CNP化学计量比空间分布元素含量雪岭云杉天山山脉
Keywords:
-
分类号:
S714
DOI:
-
文献标志码:
A
摘要:
土壤碳(C)、氮(N)和磷(P)含量以及它们之间的生态化学计量特征在养分限制、群落动态、养分利用效率和生物地球化学循环中起着重要作用,为了深入探讨陆地生态系统的物质循环,使用多元线性回归(MLR)、逐步回归(STR)、岭回归(RDR)、套索回归(LSR)方法估算天山雪岭云杉林土壤C、N、P含量以及其化学计量比的空间分布。结果表明:(1)雪岭云杉林土壤C、N、P含量和C ∶N、C ∶P、N ∶P 的均值分别为(55.76±25.24)、(4.63±2.11)、(071±0.21) g/kg和(12.24±3.73)、(79.95±31.89)、(28.16±3.18);(2)随经度的增加,雪岭云杉林内土壤C、P含量,C ∶P、C ∶N递减,N 含量、N ∶P递增;(3)对雪岭云杉林土壤N、P含量及其化学计量比空间格局的模拟中MLR、STR的表现优于RDR、LSR;(4)相对于原始变量,使用主成分作为预测因子的估算并未提高预测结果的精度。建议在未来的工作中更多地考虑自变量(如生物、非生物、人为因素等)以提高空间模拟的精度。
Abstract:
-

参考文献/References:

[1]Feller I C,Mckee K L,Whigham D F,et al. Nitrogen vs. phosphorus limitation across an ecotonal gradient in a mangrove forest[J]. Biogeochemistry,2003,62(2):145-175.
[2]Hgberg P,Nsholm T,Franklin O,et al. Tamm review:on the nature of the nitrogen limitation to plant growth in Fennoscandian boreal forests[J]. Forest Ecology and Management,2017,403:161-185.
[3]Johnson M T,Agrawal A A. Plant genotype and environment interact to shape a diverse arthropod community on evening primrose (Oenothera biennis)[J]. Ecology,2005,86(4):874-885.
[4]Hill B H,Elonen C M,Seifert L R,et al. Microbial enzyme stoichiometry and nutrient limitation in US streams and rivers[J]. Ecological Indicators,2012,18(4):540-551.
[5]Mariotte P,Canarini A,Dijkstra F A. Stoichiometric N:P flexibility and mycorrhizal symbiosis favour plant resistance against drought[J]. Journal of Ecology,2017,105(4):958-967.
[6]He W M,Yu F H,Zhang L L. Physiological integration impacts nutrient use and stoichiometry in three clonal plants under heterogeneous habitats[J]. Ecological Research,2010,25(5):967-972.
[7]Midgley M G,Phillips R P. Resource stoichiometry and the biogeochemical consequences of nitrogen deposition in a mixed deciduous forest[J]. Ecology,2016,97(12):3369-3378.
[8]Schmidt S K,Porazinska D,Concienne B L,et al. Biogeochemical stoichiometry reveals P and N limitation across the post-glacial landscape of Denali National Park,Alaska[J]. Ecosystems,2016,19(7):1164-1177.
[9]Yang Y H,Fang J Y,Guo D L,et al. Vertical patterns of soil carbon,nitrogen and carbon:nitrogen stoichiometry in Tibetan grasslands[J]. Biogeosciences Discuss,2010,7(1):1-24.
[10]Jobbágy E G,Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J]. Ecological Applications,2000,10(2):423-436.
[11]王棣,耿增超,佘雕,等. 秦岭典型林分土壤有机碳储量及碳氮垂直分布[J]. 生态学报,2015,35(16):5421-5429.
[12]陈曦,许文强,罗格平,等. 天山北坡不同环境条件下雪岭云杉(Picea schrenkiana)林限土壤属性[J]. 生态学报,2008,28(1):53-61.
[13]Dai L,Li Y Z,Luo G P,et al. The spatial variation of alpine timberlines and their biogeographical characteristics in the northern Tianshan Mountains of China[J]. Environmental Earth Sciences,2013,68(1):129-137.
[14]Li L,Chang Y P,Li X F,et al. Carbon sequestration potential of cropland reforestation on the northern slope of the Tianshan Mountains[J]. Canadian Journal of Soil Science,2016,96(4):461-471.
[15]王慧杰,常顺利,张毓涛,等. 天山雪岭云杉森林群落的密度制约效应[J]. 生物多样性,2016,24(3):252-261.
[16]Yeomans J C,Bremner J M.A rapid and precise method for routine determination of organic carbon in soil[J]. Communications in Soil Science & Plant Analysis,1988,19(13):1467-1476.
[17]Bremner J M,Tabatabai M A. Use of an ammonia electrode for determination of ammonium in Kjeldahl analysis of soils[J]. Communications in Soil Science & Plant Analysis,1972,3(2):159-165.
[18]Sherman M. Colorimetric determination of phosphorus in soils. Provision for eliminating the interference of arsenic[J]. Industrial & Engineering Chemistry Analytical Edition,1942,14(2):182-185.
[19]Hijmans R J,Cameron S E,Parra J L,et al. Very high resolution interpolated climate surfaces for global land areas[J]. International Journal of Climatology,2010,25(15):1965-1978.
[20]Fick S E,Hijmans R J. WorldClim 2:new 1‐km spatial resolution climate surfaces for global land areas[J]. International Journal of Climatology,2017,37(12):4302-4315.
[21]Hengl T,Mendes D J J,Heuvelink G B M,et al. SoilGrids250m:global gridded soil information based on machine learning[J]. PloS One,2017,12(2):e0169748.
[22]Cui W,Li Z,Chang Z,et al. Soils in Xinjiang[M]. Beijing:Science Press,1996.
[23]Guisan A,JrT C E,Hastie T. Generalized linear and generalized additive models in studies of species distributions:setting the scene[J]. Ecological Modelling,2002,157(2/3):89-100.
[24]gren G I,Wetterstedt J  M,Billberger M F K. Nutrient limitation on terrestrial plant growth-modeling the interaction between nitrogen and phosphorus[J]. New Phytologist,2012,194(4):953-960.
[25]Feng D F,Bao W K,Pang X Y. Consistent profile pattern and spatial variation of soil C/N/P stoichiometric ratios in the subalpine forests[J]. Journal of Soils & Sediments,2017,17:1-12.
[26]Zinke P J,Stangenberger A G. Elemental storage of forest soil from local to global scales[J]. Forest Ecology & Management,2000,138(1/2/3):159-165.
[27]Smith D B,Cannon W F,Woodruff L G,et al. Geochemical and mineralogical maps for soils of the conterminous United States[R]. Reston:U.S. Geological Survey,2014.
[28]Wang Y Q,Zhang X C,Huang C Q. Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau,China[J]. Geoderma,2009,150(1/2):141-149.
[29]Leroux S J,Wal E V,Wiersma Y F,et al. Stoichiometric distribution models:ecological stoichiometry at the landscape extent[J]. Ecology Letters,2017,20(12):1495-1506.
[30]Elser J J,Sterner R W,Gorokhova E,et al. Biological stoichiometry from genes to ecosystems[J]. Ecology Letters,2000,3(6):540-550.
[31]Tian H,Chen G S,Zhang C,et al. Pattern and variation of C ∶N ∶P ratios in Chinas soils:a synthesis of observational data[J]. Biogeochemistry,2010,98(1/2/3):139-151.
[32]de Long J R,Sundqvist M K,Gundale M J,et al. Effects of elevation and nitrogen and phosphorus fertilization on plant defence compounds in subarctic tundra heath vegetation[J]. Functional Ecology,2016,30(2):314-325.
[33]Cleveland C C,Liptzin D. C ∶N ∶P stoichiometry in soil:is there a “Redfield ratio” for the microbial biomass?[J]. Biogeochemistry,2007,85:235-252.
[34]Delgado-Baquerizo M,Reich P B,Khachane A N,et al. It is elemental:soil nutrient stoichiometry drives bacterial diversity[J]. Environmental Microbiology,2017,19:1176-1188.
[35]Kriticos D J,Webber B L,Leriche A,et al. CliMond:global high-resolution historical and future scenario climate surfaces for bioclimatic modelling[J]. Methods in Ecology & Evolution,2012,3:53-64.
[36]Martiny A C,Vrugt J A,Primeau F W,et al. Regional variation in the particulate organic carbon to nitrogen ratio in the surface ocean[J]. Global Biogeochemical Cycles,2013,27(3):723-731.
[37]Lek S,Guégan J F. Artificial neural networks as a tool in ecological modelling,an introduction[J]. Ecological Modelling,1999,120(2/3):65-73.
[38]DeAth G,Fabricius K E. Classification and regression trees:a powerful yet simple technique for the analysis of complex ecological data[J]. Ecology,2000,81(11):3178-3192.
[39]Hamblin S. On the practical usage of genetic algorithms in ecology and evolution[J]. Methods in Ecology and Evolution,2013,4(2):184-194.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-01-19
基金项目:新疆维吾尔自治区高校科研计划(编号:XJEDU2020Y008)。
作者简介:热依法提·艾尼瓦尔(1995—),男,新疆克拉玛依人,硕士研究生,主要从事生态化学计量学相关研究。E-mail:rayifat@163.com。
通信作者:许仲林,博士,教授,主要从事GIS及环境建模方面的研究工作。E-mail:zlxu@xju.edu.cn。
更新日期/Last Update: 2021-09-05