|本期目录/Table of Contents|

[1]吴博晗,吴向阳,李霞,等.镉对水稻及种植土壤影响的研究进展[J].江苏农业科学,2021,49(18):25-33.
 Wu Bohan,et al.Research progress on effects of cadmium on rice and planting soil[J].Jiangsu Agricultural Sciences,2021,49(18):25-33.
点击复制

镉对水稻及种植土壤影响的研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第49卷
期数:
2021年第18期
页码:
25-33
栏目:
专论与综述
出版日期:
2021-09-20

文章信息/Info

Title:
Research progress on effects of cadmium on rice and planting soil
作者:
吴博晗12 吴向阳1 李霞12345 曹悦24 王净25
1.江苏大学环境与安全工程学院,江苏镇江 212013; 2.江苏省农业科学院粮食作物研究所/江苏省优质水稻工程技术研究中心/国家水稻改良中心南京分中心,江苏南京 210014;3. 江苏省粮食作物现代产业技术协同创新中心,江苏扬州 225009;4.南京农业大学生命科学学院,江苏南京 210095;5. 南京林业大学生物与环境学院,江苏南京 210037
Author(s):
Wu Bohanet al
关键词:
镉污染水稻土壤环境运输蛋白
Keywords:
-
分类号:
S511.01
DOI:
-
文献标志码:
A
摘要:
稻米镉污染已成为影响全球粮食安全的重大问题,介绍镉对水稻的影响以及土壤承载镉的阈值2个方面的研究现状,从镉对水稻生长过程中的形态、生理特性、种植土壤及其微生物的影响、水稻在吸收镉过程中几个主要途径及参与水稻运输镉过程的运输蛋白家族等方面,结合土壤对镉的钝化与解毒机制,分析了水稻镉污染的有效缓解途径,并整理了相关的土壤修复措施,并对未来研究进行展望。
Abstract:
-

参考文献/References:

[1]刘少文,焦如珍,董玉红,等. 土壤重金属污染的生物修复研究进展[J]. 林业科学,2017,53(5):146-155.
[2]方琳娜,方正,钟豫. 土壤重金属镉污染状况及其防治措施——以湖南省为例[J]. 现代农业科技,2016 (7):212-213,219.
[3]Liu X X,Yin L,Deng X P,et al. Combined application of silicon and nitric oxide jointly alleviated cadmium accumulation and toxicity in maize[J]. Journal of Hazardous Materials,2020,395:122679.
[4]董霞,李虹呈,陈齐,等. 不同母质土壤-水稻系统Cd吸收累积特征及差异[J]. 水土保持学报,2019,33(4):342-348.
[5]石少龙. 中国大米安全风险分析[J]. 中国稻米,2020,26(1):6-10.
[6]Zhao H H,Huang X R,Liu F H,et al. A two-year field study of using a new material for remediation of cadmium contaminated paddy soil[J]. Environmental Pollution,2020,263:114614.
[7]黄道友,朱奇宏,朱捍华,等. 重金属污染耕地农业安全利用研究进展与展望[J]. 农业现代化研究,2018,39(6):1030-1043.
[8]杨明,陈璐,徐庆国,等. 镉胁迫对不同水稻品种种子萌发和幼苗生长的影响[J]. 作物研究,2017,31(6):659-663.
[9]何俊瑜,任艳芳,朱诚,等. 镉胁迫对不同水稻品种种子萌发、幼苗生长和淀粉酶活性的影响[J]. 中国水稻科学,2008,22(4):399-404.
[10]龙应霞,刘荣鹏,刘洋. 镉胁迫对水稻幼苗生长的影响[J]. 农业与技术,2020,40(18):15-17.
[11]Yang D Q,Liu S X,Xia S P,et al. Effects of cadmium stress on the growth of rice seedings[J]. Agricultural Science & Technology,2019,20(3):11-16.
[12]任树友,何玉亭,李浩,等. 轻度镉污染土壤上不同水稻品种间稻米镉富集及产量差异研究[J]. 四川农业科技,2020(6):50-52.
[13]李玉清,周雪梅,姜国辉,等. 含镉水灌溉对水稻产量和品质的影响[J]. 灌溉排水学报,2012,31(4):120-123.
[14]陈娟. 镉对水稻植株生长和叶片生理活性的影响[J]. 种子,2009,28(6):38-42.
[15]Sun Y H,Li Z J,Guo B,et al. Arsenic mitigates cadmium toxicity in rice seedlings[J]. Environmental and Experimental Botany,2008,64(3):264-270.
[16]Schipper L A,Sparling G P,Fisk L M,et al. Rates of accumulation of cadmium and uranium in a New Zealand hill farm soil as a result of long-term use of phosphate fertilizer[J]. Agriculture,Ecosystems and Environment,2011,144(1):95-101.
[17]Dias M C,Monteiro C,Moutinho P J,et al. Cadmium toxicity affects photosynthesis and plant growth at different levels[J]. Acta Physiologiae Plantarum,2013,35(4):1281-1289.
[18]Perreault F,Dionne J,Didur O,et al. Effect of cadmium on photosystem Ⅱ activity in Chlamydomonas reinhardtii:alteration of O-J-I-P fluorescence transients indicating the change of apparent activation energies within photosystem Ⅱ[J]. Photosynthesis Research,2011,107(2):151-157.
[19]潘九月,屠王满措,关美艳,等. 水杨酸缓解农作物镉毒害的作用机制研究进展[J]. 生态学杂志,2020,39(12):4216-4223.
[20]葛才林,骆剑峰,刘冲,等. 重金属对水稻光合作用和同化物输配的影响[J]. 核农学报,2005,19(3):214-218.
[21]王逸群,郑金贵,陈文列,等. Hg2+、Cd2+污染对水稻叶肉细胞伤害的超微观察[J]. 福建农业大学学报(自然科学版),2004,33(4):409-413.
[22]徐宁,胡桂萍,石旭平,等. 桑树修复农田镉和铅的土壤微环境特征分析[J]. 中国农学通报,2019,35(24):66-72.
[23]石松林,雷盈,覃紫其,等. 不同镉胁迫条件对土壤微生物活性的影响[J]. 现代农业科技,2019(23):153-154,156.
[24]Tian H X,Kong L,Megharaj M,et al. Contribution of attendant anions on cadmium toxicity to soil enzymes[J]. Chemosphere,2017,187:19-26.
[25]周利军,林小兵,武琳,等. 镉污染稻田土壤理化性质、微生物及酶活性的差异性分析[J]. 环境工程,2020,38(10):202-206,227.
[26]徐佳慧,王萌,张润,等. 土壤镉污染的生物毒性研究进展[J]. 生态毒理学报,2020,15(5):82-91.
[27]李磊,韩成,王宵宵,等. 镉胁迫下转基因水稻对根际土壤微生物的影响[J]. 江苏农业科学,2019,47(14):282-287.
[28]范美玉,黎妮,贾雨田,等. 耐镉阿氏芽孢杆菌缓解水稻受镉胁迫的研究[J]. 农业环境科学学报,2021,40(2):279-286.
[29]Uraguchi S,Mori S,Kuramata M,et al. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice[J]. Journal of Experimental Botany,2009,60(9):2677-2688.
[30]刘侯俊,梁吉哲,韩晓日,等. 东北地区不同水稻品种对Cd的累积特性研究[J]. 农业环境科学学报,2011,30(2):220-227.
[31]Hart J J,Welch R M,Norvell W A,et al. Zinc effects on cadmium accumulation and partitioning in near-isogenic lines of durum wheat that differ in grain cadmium concentration[J]. New Phytologist,2005,167(2):391-401.
[32]Liu X Q,Peng K J,Wang A G,et al. Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration[J]. Chemosphere,2010,78(9):1136-1141.
[33]Liu B,Wang L,Yang J Y,et al. Isolation and characterization of 2-methyl-6-phytyl-1,4-benzoquinol methyltransferase gene promoter from Arabidopsis thaliana[J]. Chinese Journal of Biotechnology,2008,24(1):33-39.
[34]邹金华,张忠贵,魏爱琪. 毛葱的镉吸收积累及亚细胞分布特征[J]. 天津师范大学学报(自然科学版),2014,34(1):72-77.
[35]雷丽萍,段淑辉,周志成,等. 根细胞壁中镉亚细胞分布对土壤-烟草系统中镉吸收、转运的影响[J]. 地学前缘,2019,26(6):28-34.
[36]代晶晶,徐应明,王林,等. 不同锌营养下喷施锌肥对油菜生长和元素含量的影响[J]. 环境化学,2017,36(5):1017-1025.
[37]时萌,王芙蓉,王棚涛. 植物响应重金属镉胁迫的耐性机理研究进展[J]. 生命科学,2016,28(4):504-512.
[38]Park J,Song W Y,Ko D,et al. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury[J]. The Plant Journal,2012,69(2):278-288.
[39]马卉,焦小雨,许学,等. 水稻重金属镉代谢的生理和分子机制研究进展[J]. 作物杂志,2020(1):1-8.
[40]Rauser W E. Phytochelatins and related peptides:structure,biosynthesis,and function[J]. Plant Physiology,1995,109(4):1141-1149.
[41]李花粉. 根际重金属污染[J]. 中国农业科技导报,2000,2(4):54-59.
[42]杨红霞,陈俊良,刘崴. 镉对植物的毒害及植物解毒机制研究进展[J]. 江苏农业科学,2019,47(2):1-8.
[43]仲晓春,陈京都,郝心宁. 水稻作物对重金属镉的积累、耐性机理以及栽培调控措施进展[J]. 中国农学通报,2015,31(36):1-5.
[44]Clemens S,Antosiewicz D M,Ward J M,et al. The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast[J]. Proceedings of the National Academy of Sciences,1998,95(20):12043-12048.
[45]许嘉琳,鲍子平,杨居荣,等. 农作物体内铅、镉、铜的化学形态研究[J]. 应用生态学报,1991,2(3):244-248.
[46]Nocito F F,Lancilli C,Dendena B,et al.Cadmium retention in rice roots is influenced by cadmium availability,chelation and translocation[J]. Plant,Cell and Environment,2011,34:994-1008.
[47]Leszczyszyn O I,Imam H T,Blindauer C A. Diversity and distribution of plant metallothioneins:a review of structure,properties and functions[J]. Metallomics,2013,5(9):1146-1169.
[48]Catao Elisa C P,Gallois N,Fay F,et al. Metal resistance genes enrichment in marine biofilm communities selected by biocide-containing surfaces in temperate and tropical coastal environments[J]. Environmental Pollution,2021,268:115835.
[49]王福祥,肖开转,姜身飞,等. 干旱胁迫下植物体内活性氧的作用机制[J]. 科学通报,2019,64(17):1765-1779.
[50]杜秀敏,殷文璇,赵彦修,等. 植物中活性氧的产生及清除机制[J]. 生物工程学报,2001,17(2):121-125.
[51]Toppi L S D,Lambardi M,Pazzagli L,et al. Response to cadmium in carrot in vitro plants and cell suspension cultures[J]. Plant Science,1998,137(2):119-129.
[52]杨明,陈璐,徐庆国,等. 镉胁迫对不同水稻品种种子萌发和幼苗生长的影响[J]. 作物研究,2017,31(6):659-663.
[53]王阳阳,任艳芳,周国强,等. 镉胁迫对不同抗性水稻品种幼苗生长和生理特性的影响[J]. 中国农学通报,2009,25(24):450-454.
[54]杨波,何俊瑜,任艳芳,等. 过氧化氢对镉胁迫下水稻种子萌发的缓解效应[J]. 植物生理学报,2018,54(6):1111-1118.
[55]于方明,刘可慧,刘华,等. 镉污染对水稻不同生育期抗氧化系统的影响[J]. 生态环境学报,2012,21(1):88-93.
[56]彭鸥,叶长城,刘玉玲,等. Cd胁迫下水稻叶片SOD活性和MDA含量与糙米中Cd含量的相关性研究[J]. 生态毒理学报,2019,14(6):233-240.
[57]史静,潘根兴,夏运生,等. 镉胁迫对两品种水稻生长及抗氧化酶系统的影响[J]. 生态环境学报,2013,22(5):832-837.
[58]Sasaki A,Yamaji N,Yokosho K,et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. The Plant Cell,2012,24(5):2115-2167.
[59]Hao X G,Zeng M,Wang J,et al. A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice[J]. Frontiers in Plant Science,2018(9):476.
[60]Ueno D,Yamaji N,Kono I,et al. Gene limiting cadmium accumulation in rice[J]. Proceedings of the National Academy of Sciences,2010,107(38):16500-16505.
[61]Namiko S,Mikako M,Nobushige N,et al. Mutations in rice (Oryza sativa) heavy metal ATPase 2(OsHMA2) restrict the translocation of zinc and cadmium[J]. Plant & Cell Physiology,2012,53(1):213-214.
[62]Yamaji N,Xia J X,Ueno N,et al. Preferential delivery of zinc to developing tissues in rice is mediated by P-Type heavy metal ATPase OsHMA2[J]. Plant Physiology,2013,162(2):927-939.
[63]Takahashi R,Ishimaru Y,Shimo H,et al.The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice[J]. Plant,Cell & Environment,2012,35(11):1948-1957.
[64]Zheng X,Chen L,Li X F. Arabidopsis and rice showed a distinct pattern in ZIPs genes expression profile in response to Cd stress[J]. Botanical Studies,2018,59(1):1-10.
[65]Liu X S,Feng S G,Zhang B Q,et al. OsZIP1 functions as a metal efflux transporter limiting excess zinc,copper and cadmium accumulation in rice[J]. BMC Plant Biology,2019,19:283.
[66]职帅,李畅,陈景光,等. 锌铁转运蛋白基因OsZIP5和OsZIP9参与水稻Zn2+和Cd2+的吸收和转运[J]. 分子植物育种,2021,19(1):137-148.
[67]袁雪,马海燕,马亚飞,等. 水稻镉积累相关基因家族研究进展[J]. 安徽农业科学,2019,47(16):1-4,17.
[68]Takahashi R,Ishimaru Y,Nakanishi H,et al. Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice[J]. Plant Signaling & Behavior,2011,6(11):1813-1816.
[69]Ishimaru Y,Takahashi R,Bashir K,et al. Characterizing the role of rice NRAMP5 in manganese,iron and cadmium transport[J]. Scientific Reports,2012,2:286.
[70]肖景华,吴昌银,袁猛,等. 中国水稻功能基因组研究进展与展望[J]. 科学通报,2015,60(18):1711-1723.
[71]龙起樟,黄永兰,唐秀英,等. 利用CRISPR/Cas9敲除OsNramp5基因创制低镉籼稻[J]. 中国水稻科学,2019,33(5):407-420.
[72]Liu S M,Jiang J,Liu Y,et al.Characterization and evaluation of OsLCT1 and OsNramp5 mutants generated through CRISPR/Cas9-mediated mutagenesis for breeding low Cd rice[J]. Rice Science,2019,26(2):88-97.
[73]Chang J D,Huang S,Yamaji N,et al. OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice[J]. Plant,Cell & Environment,2020,43(10):2476-2491.
[74]Zou W L,Li C,Zhu Y J,et al. Rice heavy metal P-type ATPase OsHMA6 is likely a copper efflux protein[J]. Rice Science,2020,27(2):143-151.
[75]Ochir S,Park B J,Nishizawa M,et al.Simultaneous determination of hydrolysable tannins in the petals of Rosa rugosa and allied plants[J]. Journal of Natural Medicines,2010,64(3):383-387.
[76]王学华,戴力. 作物根系镉滞留作用及其生理生化机制[J]. 中国农业科学,2016,49(22):4323-4341.
[77]Wiggenhauser M,Aucour A M,Bureau S,et al. Cadmium transfer in contaminated soil-rice systems:insights from solid-state speciation analysis and stable isotope fractionation[J]. Environmental Pollution,2020,269:115934.
[78]王波,张然然,杨如意,等. 外源硒和耐硒细菌对镉胁迫下水稻生长、生理和硒镉积累的影响[J]. 农业环境科学学报,2020,39(12):2710-2718.
[79]Huang G X,Ding C F,Li Y S,et al. Selenium enhances iron plaque formation by elevating the radial oxygen loss of roots to reduce cadmium accumulation in rice (Oryza sativa L.)[J]. Journal of Hazardous Materials,2020,398:122860.
[80]刘彩凤,史刚荣,余如刚,等. 硅缓解植物镉毒害的生理生态机制[J]. 生态学报,2017,37(23):7799-7810.
[81]Huang H L,Li M,Rizwan M,et al.Synergistic effect of silicon and selenium on the alleviation of cadmium toxicity in rice plants[J]. Journal of Hazardous Materials,2021,401:123393.
[82]Muhammad R,Muhammad K,Fang Y Z,et al.Boron supply alleviates cadmium toxicity in rice (Oryza sativa L.) by enhancing cadmium adsorption on cell wall and triggering antioxidant defense system in roots[J]. Chemosphere,2021,266:128938.
[83]张然然,张鹏,都韶婷. 镉毒害下植物氧化胁迫发生及其信号调控机制的研究进展[J]. 应用生态学报,2016,27(3):981-992.
[84]Huang Q Q,Liu Y Y,Qin X,et al.Selenite mitigates cadmium-induced oxidative stress and affects Cd uptake in rice seedlings under different water management systems[J]. Ecotoxicology and Environmental Safety,2019,168:128938.
[85]Guo B,Liang Y C,Zhu Y G. Does salicylic acid regulate antioxidant defense system,cell death,cadmium uptake and partitioning to acquire cadmium tolerance in rice[J]. Journal of Plant Physiology,2009,166(1):20-31.
[86]Majumdar S,Sachdev S,Kundu R.Salicylic acid mediated reduction in grain cadmium accumulation and amelioration of toxicity in Oryza sativa L. cv Bandana[J]. Ecotoxicology and Environmental Safety,2020,205:111167.
[87]Lv X C,Fang Y X,Zhang L T,et al. Effects of melatonin on growth,physiology and gene expression in rice seedlings under cadmium stress[J]. Phyton-International Journal of Experimental Botany,2019,88(2):91-100.
[88]李昉峻,周其文,漆新华,等. 海藻糖对镉胁迫下水稻幼苗生长的影响[J]. 农业环境科学学报,2019,38(8):1827-1834.
[89]Wang K,Li F J,Gao M L,et al.Mechanisms of trehalose-mediated mitigation of Cd toxicity in rice seedlings[J]. Journal of Cleaner Production,2020,267:121982.
[90]Dou X K,Dai H P,Twardowska I,et al.Hyperaccumulation of Cd by Rorippa globosa (Turcz.) Thell. from soil enriched with different Cd compounds,and impact of soil amendment with glutathione (GSH) on the hyperaccumulation efficiency[J]. Environmental Pollution,2019,255:113270.
[91]黄连喜,魏岚,刘晓文,等. 生物炭对土壤-植物体系中铅镉迁移累积的影响[J]. 农业环境科学学报,2020,39(10):2205-2016.
[92]李翔,杨驰浩,刘晔,等. 钝化剂对农田土壤镉有效性及不同水稻品种吸收Cd的研究[J/OL]. (2020-12-15)[2020-12-20].http://kns.cnki.net/kcms/detail/11.2097.X.20201215.0824.002.html.
[93]黄柏豪,吴秦慧姿,肖亨,等. 连施石灰对Cd污染土壤Cd形态及稻麦吸收Cd的影响[J]. 中国土壤与肥料,2020(3):138-143.
[94]He H D,Xiao Q Q,Yuan M,et al.Effects of steel slag amendments on accumulation of cadmium and arsenic by rice (Oryza sativa) in a historically contaminated paddy field[J]. Environmental Science and Pollution Research International,2020,27:40001-40008.
[95]杨发文,黄衡亮,宋福如,等. 有机硅改性复合肥防治水稻镉污染的效果和初步机制[J]. 核农学报,2020,34(2):425-432.
[96]吴迪,魏小娜,彭湃,等. 钝化剂对酸性高镉土壤钝化效果及水稻镉吸收的影响[J]. 土壤通报,2019,50(2):482-488.
[97]徐颖菲,谢国雄,章明奎. 改良剂配合水分管理减少水稻吸收土壤中镉的研究[J]. 水土保持学报,2019,33(6):356-360.
[98]牟美睿,刘洋,贲蓓倍,等. 镧对镉胁迫下水稻矿质元素吸收与转运的影响[J]. 南方农业学报,2020,51(5):1022-1028.
[99]Gu Y,Wang P,Zhang S,et al.Chemical speciation and distribution of cadmium in rice grain and implications for bioavailability to humans[J]. Environmental Science & Technology,2020,54(19):12072-12080.
[100]陈洁,王娟,王怡雯,等. 影响不同农作物镉富集系数的土壤因素[J]. 环境科学,2021,42(4):2031-2039.
[101]李冰,王昌全,李枝,等. Cd胁迫下杂交水稻对Cd的吸收及其动态变化[J]. 生态环境学报,2014,23(2):312-316.
[102]李桃,李军,韩颖,等. 磷对水稻镉的亚细胞分布及化学形态的影响[J]. 农业环境科学学报,2017,36(9):1712-1718.
[103]严勋,唐杰,李冰,等. 不同水稻品种对镉积累的差异及其与镉亚细胞分布的关系[J]. 生态毒理学报,2019,14(5):244-256.
[104]陈德,叶雪珠,张棋,等. 不同水稻品种对Cd、Zn的积累特性[J]. 浙江农业科学,2020,61(10):2113-2118,2121.
[105]张新柱,刘汇川,胡维军,等. 不同水稻品种对镉、砷的吸收累积特征[J]. 湖南农业科学,2020(6):20-23,30.
[106]Hyuck S K,Byoung H S,Gary O,et al.Phytoavailability-based threshold values for cadmium in soil for safer crop production[J]. Ecotoxicology and Environmental Safety,2020,201:110866.
[107]刘旭昕. 辽宁阜新地区不同林地类型对土壤质量指标的影响[J]. 安徽农学通报,2019,25(16):113-114.
[108]张成,卜玉山,郝佳丽,等. 有机物和外源铜对小白菜生长及铜含量的影响[J]. 山西农业大学学报(自然科学版),2013,33(6):477-482.
[109]唐伟,韩菲. 我国矿山废弃地受损生态环境的恢复探讨——以唐山石灰石矿为例[J]. 绿色科技,2013(8):199-200,205.
[110]刘玉燕,刘敏,刘浩峰. 城市土壤重金属污染特征分析[J]. 土壤通报,2006,37(1):184-188.
[111]沈秋悦,曹志强,朱月芳,等. 重金属Cd污染对土壤微生物活性影响的研究[J]. 环境污染与防治,2016,38(7):11-14,24.
[112]石松林,雷盈,覃紫其,等. 不同镉胁迫条件对土壤微生物活性的影响[J]. 现代农业科技,2019(23):153-154,156.

相似文献/References:

[1]马旭俊,刘春娟,吕世博,等.绿色荧光蛋白基因在水稻遗传转化中的应用[J].江苏农业科学,2013,41(04):35.
[2]李岳峰,居立海,张来运,等.水分胁迫下丛枝菌根对水稻/绿豆间作系统 作物生长和氮磷吸收的影响[J].江苏农业科学,2013,41(04):58.
[3]崔月峰,孙国才,王桂艳,等.不同施氮水平和前氮后移措施对水稻产量 及氮素利用率的影响[J].江苏农业科学,2013,41(04):66.
[4]张其蓉,宋发菊,田进山,等.长江中下游稻区水稻区域试验品种抗稻瘟病鉴定与评价[J].江苏农业科学,2013,41(04):92.
[5]王麒,张小明,卞景阳,等.不同插秧密度对黑龙江省第二积温带水稻产量及产量构成的影响[J].江苏农业科学,2013,41(05):60.
 Wang Qi,et al.Effect of different transplanting density on yield and yield component of rice in second temperature zone of Heilongjiang Province[J].Jiangsu Agricultural Sciences,2013,41(18):60.
[6]张国良,张森林,丁秀文,等.基质厚度和含水量对水稻育秧的影响[J].江苏农业科学,2013,41(05):62.
 Zhang Guoliang,et al.Effects of substrate thickness and water content on growth of rice seedlings[J].Jiangsu Agricultural Sciences,2013,41(18):62.
[7]赵忠宝,朱清海.稻-蟹-鳅生态系统的能值分析[J].江苏农业科学,2013,41(05):349.
 Zhao Zhongbao,et al.Emergy analysis of paddy-crab-loach ecosystem[J].Jiangsu Agricultural Sciences,2013,41(18):349.
[8]杨红福,姚克兵,束兆林,等.甲氧基丙烯酸酯类杀菌剂对水稻恶苗病的田间药效[J].江苏农业科学,2014,42(12):166.
 Yang Hongfu,et al.Field efficacy of strobilurin fungicides against rice bakanae disease[J].Jiangsu Agricultural Sciences,2014,42(18):166.
[9]唐成,陈露,安敏敏,等.稻瘟病诱导水稻幼苗叶片氧化还原系统的特征谱变化[J].江苏农业科学,2014,42(12):141.
 Tang Cheng,et al.Characteristic spectral changes of redox homeostasis system in rice seedling leaves induced by rice blast[J].Jiangsu Agricultural Sciences,2014,42(18):141.
[10]万云龙.优质水稻—春甘蓝轮作高效栽培模式[J].江苏农业科学,2014,42(12):90.
 Wan Yunlong.Efficient cultivation mode of high quality rice-spring cabbage rotation[J].Jiangsu Agricultural Sciences,2014,42(18):90.
[11]张艳超,任艳芳,林肖,等.不同灌溉方式对镉污染下水稻生长和产量的影响[J].江苏农业科学,2017,45(02):51.
 Zhang Yanchao,et al.Effects of different irrigation patterns on growth and yield of rice under cadmium pollution[J].Jiangsu Agricultural Sciences,2017,45(18):51.
[12]孙向平,严理,曾粮斌.不同镉污染水平下氮肥对稻田土壤中镉迁移转化的影响[J].江苏农业科学,2018,46(23):318.
 Sun Xiangping,et al.Effects of nitrogen fertilizer on cadmium transfer and transformation in paddy soils under different cadmium contamination levels[J].Jiangsu Agricultural Sciences,2018,46(18):318.
[13]张志鹏,蔡燕飞,段继贤,等.生物改良剂在修复水稻镉污染上的应用研究[J].江苏农业科学,2020,48(14):274.
 Zhang Zhipeng,et al.Study on application of biological modifier in remediation of cadmium pollution in rice[J].Jiangsu Agricultural Sciences,2020,48(18):274.
[14]胡含秀,周晓天,王垚,等.修复复合肥与钝化剂对镉污染农田水稻安全生产的效果研究[J].江苏农业科学,2023,51(23):203.
 Hu Hanxiu,et al.Effects of remediation compound fertilizer and passivator on safe production of rice in cadmium polluted farmland[J].Jiangsu Agricultural Sciences,2023,51(18):203.

备注/Memo

备注/Memo:
收稿日期:2020-12-29
基金项目:国家自然科学基金(编号:31571585);省重点研发计划(现代农业)(编号:BE2019377);国家重点研发计划 (编号:2016YFD0300501-03)。
作者简介:吴博晗( 1997—) 男,江西南昌人,硕士研究生,主要从事水稻逆境生理研究。E-mail:455502025@qq.com。
通信作者:李霞,博士,研究员,主要从事水稻逆境生理研究。E-mail:jspplx@jaas.ac.cn。
更新日期/Last Update: 2021-09-20