|本期目录/Table of Contents|

[1]季晓敏,沈益新,迟英俊.蒺藜苜蓿MtPEAMT基因克隆及其序列比对分析[J].江苏农业科学,2021,49(18):54-64.
 Ji Xiaomin,et al.Cloning and sequence analysis of MtPEAMT gene of Medicago truncatula[J].Jiangsu Agricultural Sciences,2021,49(18):54-64.
点击复制

蒺藜苜蓿MtPEAMT基因克隆及其序列比对分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第49卷
期数:
2021年第18期
页码:
54-64
栏目:
生物技术
出版日期:
2021-09-20

文章信息/Info

Title:
Cloning and sequence analysis of MtPEAMT gene of Medicago truncatula
作者:
季晓敏 沈益新 迟英俊
南京农业大学草业学院,江苏南京 210095
Author(s):
Ji Xiaominet al
关键词:
磷酸乙醇胺甲基转移酶蒺藜苜蓿磷脂酰胆碱甜菜碱甘氨酸胁迫响应
Keywords:
-
分类号:
S541+.901
DOI:
-
文献标志码:
A
摘要:
从蒺藜苜蓿中克隆得到磷酸乙醇胺甲基转移酶(PEAMT)的编码序列和启动子序列,通过序列对比,对蒺藜苜蓿、拟南芥、番茄等14种植物PEAMT的核苷酸序列及氨基酸序列进行分析。结果显示,蒺藜苜蓿与其他13种PEAMT的基因结构十分相似,除大豆PEAMT外,均含有12个外显子和11个内含子。14种PEAMT蛋白质长度为 475~501个氨基酸,分子量为53.86~57.09 ku,等电点均小于7,为亲水性蛋白。14种PEAMT均无跨膜结构,无信号肽,均定位于细胞质。蒺藜苜蓿PAEMT在其N端和C端各有一个保守的甲基转移酶结构域,并包含4个SAM依赖性基序(I、p-I、II、III)。14种植物PAEMT严格按照生物种属进行聚类,其中蒺藜苜蓿PEAMT和木豆PEAMT的亲缘关系最近。蒺藜苜蓿PEAMT易被蛋白激酶C、EGFR激酶、蛋白激酶A、cdc2等激酶磷酸化。蒺藜苜蓿与其他13种PEAMT的启动子区域均含有一些逆境响应元件和植物激素响应元件。综上所述,植物PEAMT在进化过程中十分保守,都具有响应植物非生物胁迫的特性。
Abstract:
-

参考文献/References:

[1]Lykidis A. Comparative genomics and evolution of eukaryotic phospholipid biosynthesis[J]. Progress in Lipid Research,2007,46(3/4):171-199.
[2]Bolognese C P,Mcgraw P. The isolation and characterization in yeast of a gene for Arabidopsis S-adenosylmethionine:phospho-ethanolamine N-methyltransferase[J]. Plant Physiology,2000,124(4):1800-1813.
[3]Mcneil S D,Nuccio M L,Ziemak M J,et al. Enhanced synthesis of choline and glycine betaine in transgenic tobacco plants that overexpress phosphoethanolamine N-methyltransferase[J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98(17):10001-10005.
[4]Asano T,Hayashi N,Kobayashi M,et al. A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance[J]. Plant Journal,2012,69(1):26-36.
[5]Hong Y Y,Zhang W H,Wang X M. Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity[J]. Plant,Cell & Environment,2010,33(4):627-635.
[6]Yeagle P L. The membranes of cells Ⅱ the lipids of biological membranes[M]. Pittsburgh:Academic Press,2016.
[7]Sakamoto A,Valverde R,Chen T H,et al. Transformation of arabidopsis with the codA gene for choline oxidase enhances freezing tolerance of plants[J]. Plant Journal,2000,22(5):449-453.
[8]Sakamoto A,Murata N. Genetic engineering of glycinebetaine synthesis in plants:current status and implications for enhancement of stress tolerance[J]. Journal of Experimental Botany,2000,51(342):81-88.
[9]Charron J F,Breton G,Danyluk J,et al. Molecular and biochemical characterization of a cold-regulated phosphoethanolamineN-methyltransferase from wheat[J]. Plant Physiology,2002,129(1):363-373.
[10]Wu S W,Yu Z W,Wang F G,et al. Cloning,characterization,and transformation of the phosphoethanolamine N-methyltransferase gene (ZmPEAMT1) in maize (Zea mays L.)[J]. Molecular Biotechnology,2007,36(2):102-112.
[11]Cruz-Ramírez A,López-Bucio J,Ramírez-Pimentel G,et al. The xipotl mutant of Arabidopsis reveals a critical role for phospholipid metabolism in root system development and epidermal cell integrity[J]. The Plant Cell,2004,16(8):2020-2034.
[12]Zou Y,Zhang X J,Tan Y Y,et al. Phosphoethanolamine N-methyltransferase 1 contributes to maintenance of root apical meristem by affecting ROS and auxin-regulated cell differentiation in Arabidopsis[J]. The New Phytologist,2019,224(1):258-273.
[13]Datko A H,Mudd S H. Phosphatidylcholine synthesis:differing patterns in soybean and carrot[J]. Plant Physiology,1988,88(3):854-861.
[14]Williams M,Harwood J L. Alternative pathways for phosphatidylcholine synthesis in olive (Olea europaea L.) callus cultures[J]. The Biochemical Journal,1994,304(2):463-468.
[15]Cook D R. Medicago truncatula-a model in the making![J]. Current Opinion in Plant Biology,1999,2(4):301-304.
[16]Clawson G A,Willis D B,Weissbach A,et al. Proceedings of a Hoffman-La Roche-UCLA colloquium on nucleic acid methylation[C]. Frisco,1990.
[17]Lee S G,Jez J M. Nematode phospholipid metabolism:an example of closing the genome-structure-function circle[J]. Trends in Parasitology,2014,30(5):241-250.
[18]Min S,Lee B,Yoon S. Deep learning in bioinformatics[J]. Briefings in Bioinformatics,2017,18(5):851-869.
[19]Guo R X,Zhao Y,Zou Q,et al. Bioinformatics applications on Apache Spark[J]. GigaScience,2018,7(8):giy098.
[20]Gauthier J,Vincent A T,Charette S J,et al. A brief history of bioinformatics[J]. Briefings in Bioinformatics,2019,20(6):1981-1996.
[21]Begora M D,Macleod M J,Mccarry B E,et al. Identification of phosphomethylethanolamine N-methyltransferase from Arabidopsis and its role in choline and phospholipid metabolism[J]. The Journal of Biological Chemistry,2010,285(38):29147-29155.
[22]Reynolds J M,Takebe S,Jy C,et al. Biochemical and genetic analysis of the phosphoethanolamine methyltransferase of the human malaria parasite Plasmodium falciparum[J]. The Journal of Biological Chemistry,2008,283(12):7894-7900.
[23]Lee S G,Jez J M. Evolution of structure and mechanistic divergence in di-domain methyltransferases from nematode phosphocholine biosynthesis[J]. Structure,2013,21(10):1778-1787.
[24]van Bentem S F,Hirt H. Using phosphoproteomics to reveal signalling dynamics in plants[J]. Trends in Plant Science,2007,12(9):404-411.
[25]Kwiatek J M,Han G S,Carman G M. Phosphatidate-mediated regulation of lipid synthesis at the nuclear/endoplasmic reticulum membrane[J]. Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids,2020,1865(1):158434.
[26]Craddock C P,Adams N,Bryant F M,et al. PHOSPHATIDIC ACID PHOSPHOHYDROLASE regulates phosphatidylcholine biosynthesis in Arabidopsis by phosphatidic acid-mediated activation of CTP:PHOSPHOCHOLINE CYTIDYLYLTRANSFERASE activity[J]. The Plant Cell,2015,27(4):1251-1264.
[27]Watanabe K A,Homayouni A,Gu L,et al. Transcriptomic analysis of rice aleurone cells identified a novel abscisic acid response element[J]. Plant,Cell & Environment,2017,40(9):2004-2016.
[28]张一冉,王雅楠,杨杨,等. 脱落酸与水杨酸处理调节李果实抗冷性及氧化酶活性[J]. 江苏农业学报,2020,36(2):471-476.
[29]马赛箭. 盐角草磷酸乙醇胺N-甲基转移酶基因(PEAMT)及其启动子的克隆和表达分析[D]. 大连:大连理工大学,2008.
[30]谢瑾卉. 辽宁碱蓬SIPEAMT基因表达特性及SIPEAMT启动子功能分析[D]. 大连:辽宁师范大学,2013.
[31]勾薇. 玉米磷酸乙醇胺氮甲基转移酶(PEAMT)基因启动子的克隆和功能分析[D]. 杨凌:西北农林科技大学,2017.
[32]Nuccio M L,Ziemak M J,Henry S A,et al. cDNA cloning of phosphoethanolamine N-methyltransferase from spinach by complementation in Schizosaccharomyces pombe and characterization of the recombinant enzyme[J]. The Journal of Biological Chemistry,2000,275(19):14095-14101.
[33]Keogh M R,Courtney P D,Kinney A J,et al. Functional characterization of phospholipid N-methyltransferases from Arabidopsis and soybean[J]. Journal of Biological Chemistry,2009,284(23):15439-15447.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-01-24
基金项目:国家自然科学基金(编号:31601324);作物遗传与种质创新国家重点实验室开放课题(编号:ZW201904)。
作者简介:季晓敏(1994—),男,江苏南通人,硕士,主要从事草类植物分子生物学研究。E-mail:xiaominji941219@163.com。
通信作者:迟英俊,博士,讲师,主要从事分子遗传学研究。E-mail:yingjunchi@njau.edu.cn。
更新日期/Last Update: 2021-09-20