|本期目录/Table of Contents|

[1]曾坚,谢雅倩,陈丽萍,等.木薯2C型蛋白磷酸酶基因MePP2C55的克隆及表达分析[J].江苏农业科学,2022,50(8):73-78.
 Zeng Jian,et al.Cloning and expression analysis of MePP2C55 in Manihot esculenta Crantz[J].Jiangsu Agricultural Sciences,2022,50(8):73-78.
点击复制

木薯2C型蛋白磷酸酶基因MePP2C55的克隆及表达分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第8期
页码:
73-78
栏目:
生物技术
出版日期:
2022-04-20

文章信息/Info

Title:
Cloning and expression analysis of MePP2C55 in Manihot esculenta Crantz
作者:
曾坚13 谢雅倩1 陈丽萍1 颜彦2 胡伟2
1.韶关学院英东生物与农业学院,广东韶关 512005; 2.中国热带农业科学院热带生物技术研究所,海南海口 571101;3.韶关市芳香植物工程技术研究中心,广东韶关 512005
Author(s):
Zeng Jianet al
关键词:
ABAMePP2C非生物胁迫采后生理性变质表达分析
Keywords:
-
分类号:
S533
DOI:
-
文献标志码:
A
摘要:
2C型蛋白磷酸酶(protein phosphatase 2C,PP2C) 基因是ABA信号途径中主要组成部分,为分析其在木薯非生物胁迫和块根采后生理性变质 (post-harvest physiological deterioration,PPD)中的作用,采用RT-PCR技术从木薯叶片(SC124)中克隆得到MePP2C55基因。对MePP2C55基因的理化性质、保守结构域、遗传进化关系、蛋白质结构预测及基因的启动子元件进行了预测和分析,并对MePP2C55基因在不同处理和PPD过程中的表达进行了分析。结果显示:(1)MePP2C55基因全长1 100 bp,编码369个氨基酸残基,蛋白相对分子量40.7 ku,理论等电点为7.57,含有PP2C的家族结构域。蛋白质序列分析显示,MePP2C55与橡胶树和麻风树的PP2C最相似,分别为88.80%和8060%。MePP2C55和其他PP2C一样,在C-端保守。这些结果均表明,MePP2C55基因属于PP2C家族。(2)MePP2C55基因在不同木薯组织中的表达均较高,在侧芽和叶柄中最高。(3)MePP2C55基因属于ABA核心通路,所以启动子序列分析显示含有10个ABRE (abscisic acid responsiveness) 元件。MePP2C55基因能被PEG和ABA处理显著诱导,且在PPD过程中也能被显著诱导。从上述结果可推测,MePP2C55基因具有提高植物应对非生物胁迫的潜力,同时也参与了PPD过程,为下一步研究该基因在木薯采后和抗逆中的功能提供了线索。
Abstract:
-

参考文献/References:

[1]Raghavendra A S,Gonugunta V K,Christmann A,et al. ABA perception and signalling[J]. Trends in Plant Science,2010,15(7):395-401.
[2]Krasensky J,Jonak C.Drought,salt,and temperature stress-induced metabolic rearrangements and regulatory networks[J]. Journal of Experimental Botany,2012,63(4):1593-1608.
[3]Park S Y,Fung P,Nishimura N,et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins[J]. Science,2009,324(5930):1068-1071.
[4]Ma Y E,Szostkiewicz I,Korte A,et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors[J]. Science,2009,324(5930):1064-1068.
[5]Fuchs S,Grill E,Meskiene I,et al. Type 2C protein phosphatases in plants[J]. The FEBS Journal,2013,280(2):681-693.
[6]张继红,陶能国. 植物PP2C蛋白磷酸酶ABA信号转导及逆境胁迫调控机制研究进展[J]. 广西植物,2015,35(6):935-941.
[7]Xue T T,Wang D,Zhang S Z,et al. Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis[J]. BMC Genomics,2008,9:550.
[8]Cao J M,Jiang M,Li P,et al. Genome-wide identification and evolutionary analyses of the PP2C gene family with their expression profiling in response to multiple stresses in Brachypodium distachyon[J]. BMC Genomics,2016,17:175.
[9]Komatsu K,Nishikawa Y,Ohtsuka T,et al. Functional analyses of the ABI1-related protein phosphatase type 2C reveal evolutionarily conserved regulation of abscisic acid signaling between Arabidopsis and the moss Physcomitrella patens[J]. Plant Molecular Biology,2009,70(3):327-340.
[10]Mishra G,Zhang W H,Deng F,et al. A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis[J]. Science,2006,312(5771):264-266.
[11]Meyer K,Leube M P,Grill E.A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana[J]. Science,1994,264(5164):1452-1455.
[12]Saez A,Apostolova N,Gonzalez-Guzman M,et al. Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling[J]. The Plant Journal,2004,37(3):354-369.
[13]Nishimura N,Yoshida T,Kitahata N,et al. ABA-hypersensitive germination1 encodes a protein phosphatase 2C,an essential component of abscisic acid signaling in Arabidopsis seed[J]. The Plant Journal,2007,50(6):935-949.
[14]Liu L X,Hu X L,Song J A,et al. Over-expression of a Zea mays L. protein phosphatase 2C gene (ZmPP2C) in Arabidopsis thaliana decreases tolerance to salt and drought[J]. Journal of Plant Physiology,2009,166(5):531-542.
[15]Singh A,Giri J,Kapoor S,et al. Protein phosphatase complement in rice:genome-wide identification and transcriptional analysis under abiotic stress conditions and reproductive development[J]. BMC Genomics,2010,11:435.
[16]Liu S,Zainuddin I M,Vanderschuren H,et al. RNAi inhibition of feruloyl CoA 6′-hydroxylase reduces scopoletin biosynthesis and post-harvest physiological deterioration in cassava (Manihot esculenta Crantz) storage roots[J]. Plant Molecular Biology,2017,94(1/2):185-195.
[17]张鹏,杨俊,周文智,等. 能源木薯高淀粉抗逆分子育种研究进展与展望[J]. 生命科学,2014,26(5):465-473.
[18]Hu W,Kong H,Guo Y L,et al. Comparative physiological and transcriptomic analyses reveal the actions of melatonin in the delay of postharvest physiological deterioration of cassava[J]. Frontiers in Plant Science,2016,7:736.
[19]颜彦,铁韦韦,丁泽红,等. 木薯MePYL8基因克隆及表达分析[J]. 分子植物育种,2018,16(14):4498-4504.
[20]Xu J,Duan X G,Yang J,et al. Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots[J]. Plant Physiology,2013,161(3):1517-1528.
[21]Zidenga T,Leyva-Guerrero E,Moon H,et al. Extending cassava root shelf life via reduction of reactive oxygen species production[J]. Plant Physiology,2012,159(4):1396-1407.
[22]张振文,李开绵. 木薯块根采后腐烂及贮藏方法研究进展[J]. 热带作物学报,2012,33(7):1326-1331.
[23]Zhao H,Wu C L,Yan Y,et al. Genomic analysis of the core components of ABA signaling reveals their possible role in abiotic stress response in cassava[J]. Environmental and Experimental Botany,2019,167:103855.
[24]曾坚,廖凤凤,吴春来,等. 木薯MeHSF7基因克隆及表达分析[J]. 南方农业学报,2020,51(6):1256-1264.
[25]Li W Q,Wang L,Sheng X L,et al. Molecular basis for the selective and ABA-independent inhibition of PP2CA by PYL13[J]. Cell Research,2013,23(12):1369-1379.
[26]罗兴录,吴美艳,陶林. 木薯不同时期施钾对淀粉合成关键酶活性和淀粉积累的影响[J]. 江苏农业科学,2020,48(16):115-119.
[27]杨方威,段懿菲,冯叙桥.脱落酸的生物合成及对水果成熟的调控研究进展[J]. 食品科学,2016,37(3):266-272.
[28]Schweighofer A,Hirt H,Meskiene I. Plant PP2C phosphatases:emerging functions in stress signaling[J]. Trends in Plant Science,2004,9(5):236-243.
[29]Millward T A,Zolnierowicz S,Hemmings B A.Regulation of protein kinase cascades by protein phosphatase 2A[J]. Trends in Biochemical Sciences,1999,24(5):186-191.
[30]Miyazaki S,Koga R,Bohnert H J,et al. Tissue-and environmental response-specific expression of 10 PP2C transcripts in Mesembryanthemum crystallinum[J]. Molecular & General Genetics,1999,261(2):307-316.
[31]Reyes D,Rodríguez D,González-García M P,et al. Overexpression of a protein phosphatase 2C from beech seeds in Arabidopsis shows phenotypes related to abscisic acid responses and gibberellin biosynthesis[J]. Plant Physiology,2006,141(4):1414-1424.
[32]叶兴国. 新模式植物短柄草模式特性研究进展[J]. 作物学报,2008,34(6):919-925.
[33]郭鹏,张士刚,邢鑫,等. 欧美杨PdPP2C基因的克隆与功能分析[J]. 北京林业大学学报,2015,37(2):100-106.
[34]萧蓓蕾,李冬梅,刘丽霞. 水分胁迫对转ZmPP2C2基因烟草膜脂过氧化及抗氧化酶活性的影响[J]. 河南农业科学,2010,39(11):36-39.
[35]倪岚. OsBiPP2C1和OsDMI3调节ABA诱导的抗氧化防护的机制研究. [D]. 南京:南京农业大学,2014.

相似文献/References:

[1]程云,吴欣欣,李百健,等.外源脱落酸对魏可葡萄果实着色及品质的影响[J].江苏农业科学,2014,42(10):163.
 Cheng Yun,et al.Effects of exogenous ABA on coloring and quality of “Wink” grape fruits[J].Jiangsu Agricultural Sciences,2014,42(8):163.
[2]马凤霞,赵权.乙烯利、ABA对北五味子品质的影响[J].江苏农业科学,2014,42(09):218.
 Ma Fengxia,et al.Effects of ethephon and abscisic acid on quality of Schisandra chinensis (Turcz.) Baill.[J].Jiangsu Agricultural Sciences,2014,42(8):218.
[3]马芳芳,蒋明义.外源ABA处理的玉米叶片酵母双杂交cDNA文库的构建及评价[J].江苏农业科学,2016,44(04):58.
 Ma Fangfang,et al.Construction and evaluation of yeast two hybrid cDNA library of maize leaf treated with exogenous ABA[J].Jiangsu Agricultural Sciences,2016,44(8):58.
[4]蔡凤香,陈豆豆,杨飞,等.镉锌互作条件下ABA 对水稻幼苗根系生长和生长素分布的影响[J].江苏农业科学,2016,44(06):114.
 Cai Fengxiang,et al.Effects of ABA on growth of rice seedling roots and distribution of auxin under condition of cadmium and zinc interactions[J].Jiangsu Agricultural Sciences,2016,44(8):114.
[5]张晓晶,李晨晨,刘志宏,等.不同浓度ABA处理对冬小麦生理指标的影响[J].江苏农业科学,2015,43(09):103.
 Zhang Xiaojing.Effects of different concentration of ABA treatments on physiological indices of winter wheat[J].Jiangsu Agricultural Sciences,2015,43(8):103.
[6]张媛华.PTK与H2O2在ABA诱导气孔关闭中的初步关系[J].江苏农业科学,2017,45(05):77.
 Zhang Yuanhua.Preliminary relationship between PTK and H2O2 in ABA-induced stomatal closure[J].Jiangsu Agricultural Sciences,2017,45(8):77.
[7]王来平,薛晓敏,路超,等.几种抗逆增强剂对苹果花与幼果抗寒力的效果[J].江苏农业科学,2017,45(09):109.
 Wang Laiping,et al.Effects of several antistatic enhancers on cold resistance of apple flower and young fruit[J].Jiangsu Agricultural Sciences,2017,45(8):109.
[8]佘萍,马杰,余治家,等.ABA、PP333和GA对美国红叶樱花苗木生长的影响[J].江苏农业科学,2017,45(15):128.
 She Ping,et al.Effects of ABA,PP333 and GA on growth of red cherry blossom[J].Jiangsu Agricultural Sciences,2017,45(8):128.
[9]丁泽红,付莉莉,吴春来,等.木薯MeTPS1基因克隆、表达及生物信息学分析[J].江苏农业科学,2018,46(09):28.
 Ding Zehong,et al.Cloning,expression and bioinformatic analysis of MeTPS1 gene in cassava[J].Jiangsu Agricultural Sciences,2018,46(8):28.
[10]姚会东,闫威姣,李宏业,等.不同外源调节物质对克瑞森无核葡萄果实着色及品质的影响[J].江苏农业科学,2022,50(23):140.
 Yao Huidong,et al.Impacts of exogenous regulation substances on fruit coloration and quality of ‘Crimson Seedless’ grape[J].Jiangsu Agricultural Sciences,2022,50(8):140.

备注/Memo

备注/Memo:
收稿日期:2021-07-01
基金项目:广东省基础与应用基础研究基金(编号:2021A1515011236);广东省教育厅青年创新人才项目(编号:2018KQNCX234);韶关学院重点项目(编号:SZ2018KJ05);广东省韶关市科技计划(编号:2019sn087);国家自然科学基金(编号:31901537);韶关学院博士启动项目(编号:99000615)。
作者简介:曾坚(1987—),男,湖南岳阳人,博士,副教授,主要从事植物抗逆基因功能研究。E-mail:zengjian@sgu.edu.cn。
通信作者:胡伟,博士,研究员,主要从事植物基因功能研究。E-mail:huwei2010916@126.com。
更新日期/Last Update: 2022-04-20