|本期目录/Table of Contents|

[1]吾木提·艾山江,尼加提·卡斯木,买买提·沙吾提.基于波段组合优化光谱指数的冬小麦LAI估算[J].江苏农业科学,2022,50(13):207-218.
 Umut Hasan,et al.Estimation of winter wheat LAI based on optimized vegetation indices of band combination[J].Jiangsu Agricultural Sciences,2022,50(13):207-218.
点击复制

基于波段组合优化光谱指数的冬小麦LAI估算(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第13期
页码:
207-218
栏目:
农业工程与信息技术
出版日期:
2022-07-05

文章信息/Info

Title:
Estimation of winter wheat LAI based on optimized vegetation indices of band combination
作者:
吾木提·艾山江12 尼加提·卡斯木12 买买提·沙吾提3
1.伊犁师范大学资源与生态研究所,新疆伊宁 835000; 2.伊犁师范大学生物与地理科学学院,新疆伊宁 835000;3.新疆大学地理与遥感科学学院,新疆乌鲁木齐 830046
Author(s):
Umut Hasanet al
关键词:
叶面积指数光谱植被指数冬小麦拔节期
Keywords:
-
分类号:
S512.1+10.1;S127
DOI:
-
文献标志码:
A
摘要:
叶面积指数(LAI)是表示植被利用光能状况和冠层结构的一个综合指数,与作物产量密切相关。高光谱遥感数据具有连续、高光谱分辨率等特点,为估算农作物生理生化参数和冠层结构参数提供了重要手段。为挖掘高光谱数据估算LAI的最优波段组合以及提高估算精度,以冬小麦作为研究对象,野外实测不同生长阶段(起身、拔节、开花阶段)的冠层高光谱数据,并对其进行不同数学变换处理,包括原始光谱、一阶导数光谱和连续统去除。利用3种不同预处理的冠层高光谱数据构建30种常用植被指数和4种优化光谱指数,比较常用植被指数与优化光谱指数对冬小麦LAI的响应,建立估算冬小麦LAI的单变量和多变量回归模型,对其进行精度验证,并筛选出最优估算模型。结果表明,随着生育期的推进,可见光波段范围内,冬小麦冠层光谱反射率较低、吸收较强,LAI 对连续统去除光谱的影响较大,呈负相关;近红外波段范围内不同生育期间的差异较大,随着LAI的增大,冠层光谱的红边位置出现了“红移”现象;基于一阶导数的优化植被指数(NDSI和RSI)与LAI相关系数达到0.8;从估算模型来看,基于一阶导数的RSI(627 nm,774 nm)单变量二次多项式模型表现较佳,R2为0.809,RMSE为0.401,基于NDSIor(724 nm,987 nm)、RSIfod(627 nm,774 nm)、CIcr(686 nm,744 nm)建立的PLSR模型拟合效果最佳,模型精度为R2=0.817、RMSE=0.428和RPD=2250,说明本研究所构建的优化光谱指数能够有效进行冬小麦LAI的估算,可以为精准农业提供方法上的参考。
Abstract:
-

参考文献/References:

[1]Abulaiti Y,Sawut M,Maimaitiaili B,et al. A possible fractional order derivative and optimized spectral indices for assessing total nitrogen content in cotton[J]. Computers and Electronics in Agriculture,2020,171:105275.
[2]Alton P B. The sensitivity of models of gross primary productivity to meteorological and leaf area forcing:a comparison between a Penman-Monteith ecophysiological approach and the MODIS light-use efficiency algorithm[J]. Agricultural and Forest Meteorology,2016,218/219:11-24.
[3]Ali A,Imran M. Evaluating the potential of red edge position (REP) of hyperspectral remote sensing data for real time estimation of LAI & chlorophyll content of kinnow mandarin (Citrus reticulata) fruit orchards[J]. Scientia Horticulturae,2020,267:109326.
[4]Aparicio N,Villegas D,Casadesus J,et al. Spectral vegetation indices as nondestructive tools for determining durum wheat yield[J]. Agronomy Journal,2000,92(1):83-91.
[5]Wiegand C L,Gausman H W,Cueller J A,et al. Vegetation density as deduced from ERTS-1 MSS response[J]. Nasa Special Publication,1974,351:93.
[6]Li H,Liu G H,Liu Q S,et al. Retrieval of winter wheat leaf area index from Chinese GF-1 satellite data using the PROSAIL model[J]. Sensors,2018,18(4):1120.
[7]孟禹弛,侯学会,王猛. 不同生育期冬小麦叶面积指数高光谱遥感估算模型[J]. 江苏农业科学,2017,45(5):211-215.
[8]陈雪洋,蒙继华,朱建军,等. 冬小麦叶面积指数的高光谱估算模型研究[J]. 测绘科学,2012,37(5):141-144.
[9]李军玲,彭记永. 不同生育时期冬小麦叶面积指数地面高光谱遥感模型研究[J]. 麦类作物学报,2018,38(8):979-987.
[10]Liu J G,Pattey E,Jégo G. Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons[J]. Remote Sensing of Environment,2012,123:347-358.
[11]吾木提·艾山江,买买提·沙吾提,陈水森,等. 基于GF-1/2卫星数据的冬小麦叶面积指数反演[J]. 作物学报,2020,46(5):787-797.
[12]Fang H L,Baret F,Plummer S,et al. An overview of global leaf area index (LAI):methods,products,validation,and applications[J]. Reviews of Geophysics,2019,57(3):739-799.
[13]Tucker C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment,1979,8(2):127-150.
[14]Roujean J L,Breon F M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements[J]. Remote Sensing of Environment,1995,51(3):375-384.
[15]Haboudane D,Miller J R,Pattey E,et al. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies:modeling and validation in the context of precision agriculture[J]. Remote Sensing of Environment,2004,90(3):337-352.
[16]陈艳华,张万昌,雍斌. 基于分类知识利用神经网络反演叶面积指数[J]. 生态学报,2007,27(7):2785-2793.
[17]Rondeaux G,Steven M,Baret F. Optimization of soil-adjusted vegetation indices[J]. Remote Sensing of Environment,1996,55(2):95-107.
[18]Huete A R,Liu H Q,Batchily K,et al. A comparison of vegetation indices over a global set of TM images for EOS-MODIS[J]. Remote Sensing of Environment,1997,59(3):440-451.
[19]高林,杨贵军,于海洋,等. 基于无人机高光谱遥感的冬小麦叶面积指数反演[J]. 农业工程学报,2016,32(22):113-120.
[20]Daughtry C S T,Walthall C L,Kim M S,et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance[J]. Remote Sensing of Environment,2000,74(2):229-239.
[21]Delegido J,Verrelst J,Meza C M,et al. A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems[J]. European Journal of Agronomy,2013,46:42-52.
[22]le Maire G,Franois C,Soudani K,et al. Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content,leaf mass per area,leaf area index and leaf canopy biomass[J]. Remote Sensing of Environment,2008,112(10):3846-3864.
[23]Zarate-Valdez J L,Whiting M L,Lampinen B D,et al. Prediction of leaf area index in almonds by vegetation indexes[J]. Computers and Electronics in Agriculture,2012,85:24-32.
[24]Tanaka S,Kawamura K,Maki M,et al. Spectral index for quantifying leaf area index of winter wheat by field hyperspectral measurements:a case study in Gifu prefecture,central Japan[J]. Remote Sensing,2015,7(5):5329-5346.
[25]Gupta R K,Vijayan D,Prasad T S.Comparative analysis of red-edge hyperspectral indices[J]. Advances in Space Research,2003,32(11):2217-2222.
[26]Gitelson A A,Peng Y,Arkebauer T J,et al. Relationships between gross primary production,green LAI,and canopy chlorophyll content in maize:implications for remote sensing of primary production[J]. Remote Sensing of Environment,2014,144:65-72.
[27]Penuelas J,Pinol J,Ogaya R,et al. Estimation of plant water concentration by the reflectance water index WI (R900/R970)[J]. International Journal of Remote Sensing,1997,18(13):2869-2875.
[28]Gamon J A,Peuelas J,Field C B.A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency[J]. Remote Sensing of Environment,1992,41(1):35-44.
[29]Marshak A,Knyazikhin Y,Davis A B,et al. Cloud-vegetation interaction:use of normalized difference cloud index for estimation of cloud optical thickness[J]. Geophysical Research Letters,2000,27(12):1695-1698.
[30]Vogelmann J E,Rock B N,Moss D M.Red edge spectral measurements from sugar maple leaves[J]. International Journal of Remote Sensing,1993,14(8):1563-1575.
[31]束美艳,顾晓鹤,孙林,等. 基于新型植被指数的冬小麦LAI高光谱反演[J]. 中国农业科学,2018,51(18):3486-3496.
[32]Ju C H,Tian Y C,Yao X,et al. Estimating leaf chlorophyll content using red edge parameters[J]. Pedosphere,2010,20(5):633-644.
[33]刘思峰,党耀国,方志耕.灰色系统理论及其应用[M]. 5版.北京:科学出版社,2010.
[34]邓聚龙.灰色系统基本方法:汉英对照[M]. 武汉:华中科技大学出版社,2005.
[35]Xia X F,Sun Y,Wu K,et al. Optimization of a straw ring-die briquetting process combined analytic hierarchy process and grey correlation analysis method[J]. Fuel Processing Technology,2016,152:303-309.
[36]刘轲,周清波,吴文斌,等. 基于多光谱与高光谱遥感数据的冬小麦叶面积指数反演比较[J]. 农业工程学报,2016,32(3):155-162.

相似文献/References:

[1]付立东,隋鑫.不同取秧量与穴距对机插水稻产量的影响[J].江苏农业科学,2014,42(12):70.
 Fu Lidong,et al.Effects of different seedling quantity and hole distance on yield of mechanized transplanting rice[J].Jiangsu Agricultural Sciences,2014,42(13):70.
[2]李章成,李源洪,魏来,等.基于SPOT5影像分析植被指数与水稻叶面积指数和产量的相关性[J].江苏农业科学,2014,42(01):284.
 Li Zhangcheng,et al.Study on correlation between vegetation index and leaf area index and yield of rice based on SPOT5 image analysis[J].Jiangsu Agricultural Sciences,2014,42(13):284.
[3]马红军,张玲丽,李文甲.不同水肥处理下温室番茄干物质积累动态模型[J].江苏农业科学,2016,44(08):254.
 Ma Hongjun,et al.Study on dynamic models of dry matter production of tomato in greenhouse under different water and fertilizer treatment[J].Jiangsu Agricultural Sciences,2016,44(13):254.
[4]王丹,付立东.氮肥不同施入量对水稻新品种盐粳939产量的影响[J].江苏农业科学,2014,42(05):73.
 Wang Dan,et al.Effect of different amounts of nitrogen fertilizer on yield of new rice cultivar “Yanjing 939”[J].Jiangsu Agricultural Sciences,2014,42(13):73.
[5]胡法龙,郑桂萍,于洪明,等.寒地水稻不同群体叶面积指数、干物质量与产量的关系[J].江苏农业科学,2014,42(05):93.
 Hu Falong,et al.Relationship between leaf area index,dry matter weight and yield of different rice groups in cold region[J].Jiangsu Agricultural Sciences,2014,42(13):93.
[6]王伟义,崔必波,孙扣忠,等.两系杂交水稻两优363制种的施氮量效应[J].江苏农业科学,2014,42(05):101.
 Wang Weiyi,et al.Effect of nitrogen levels on seed production of two-line hybrid rice “Liangyou 363”[J].Jiangsu Agricultural Sciences,2014,42(13):101.
[7]张秀美,王宏,张广仁.不同负载量对苹果“丽嘎啦/MM106”冠层光合能力及品质的影响[J].江苏农业科学,2015,43(10):218.
 Zhang Xiumei,et al.Effects of capacity on canopy photosynthesis and quality of apple “Ligala/MM106”[J].Jiangsu Agricultural Sciences,2015,43(13):218.
[8]丁从慧,申双和,陶苏林,等.玉米根-冠及叶片水分利用效率对土壤水分的响应[J].江苏农业科学,2015,43(10):108.
 Ding Conghui,et al.Response of maize root-shoot and leaf water use efficiency to soil moisture[J].Jiangsu Agricultural Sciences,2015,43(13):108.
[9]康婷婷,居为民,李秉柏.水稻叶面积指数遥感反演方法对比分析[J].江苏农业科学,2015,43(05):366.
 Kang Tingting,et al.Contrastive analysis of remote sensing inversion method of rice leaf area index[J].Jiangsu Agricultural Sciences,2015,43(13):366.
[10]石姣姣,江晓东,邱思齐.昼夜不同增温处理对小麦生长发育和产量的影响[J].江苏农业科学,2015,43(01):82.
 Shi Jiaojiao,et al.Effects of different day/night warming on growth and yield of winter wheat under free air temperature increased (FATI) facility[J].Jiangsu Agricultural Sciences,2015,43(13):82.

备注/Memo

备注/Memo:
收稿日期:2022-02-22
基金项目:新疆维吾尔自治区高校科研计划项目(编号:XJEDU2020Y037);伊犁师范大学2020年度博士引进人才科研项目(编号:2020YSBSYJ001);伊犁师范大学资源与生态研究所开放课题重点项目(编号:YLNURE202206)。
作者简介:吾木提·艾山江(1992—),男,新疆伊宁人,硕士,助教,主要从事高光谱数据建模与估算。E-mail:Umut710@163.com。
通信作者:尼加提·卡斯木,博士,副教授,主要从事农业遥感及参数估算。E-mail:Nejatkasim@126.com。
更新日期/Last Update: 2022-07-05